scholarly journals Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2050
Author(s):  
Matthias Kahl ◽  
Sebastian Schramm ◽  
Max Neumann ◽  
Andreas Kroll

Laser-based additive manufacturing enables the production of complex geometries viaayer-wise cladding. Laser metal deposition (LMD) uses a scanningaser source to fuse in situ deposited metal powderayer byayer. However, due to the excessive number of influential factors in the physical transformation of the metal powder and the highly dynamic temperature fields caused by the melt pool dynamics and phase transitions, the quality and repeatability of parts built by this process is still challenging. In order to analyze and/or predict the spatially varying and time dependent thermal behavior in LMD, extensive work has been done to develop predictive models usually by using finite element method (FEM). From a control-oriented perspective, simulations based on these models are computationally too expensive and are thus not suitable for real-time control applications. In this contribution, a spatio-temporal input–output model based on the heat equation is proposed. In contrast to other works, the parameters of the model are directly estimated from measurements of the LMD process acquired with an infrared (IR) camera during processing specimens using AISI 316 L stainless steel. In order to deal with noisy data, system identification techniques are used taking different disturbing noise into account. By doing so, spatio-temporal models are developed, enabling the prediction of the thermal behavior by means of the radiance measured by the IR camera in the range of the considered processing parameters. Furthermore, in the considered modeling framework, the computational effort for thermal prediction is reduced compared to FEM, thus enabling the use in real-time control applications.

1976 ◽  
Vol 2 (2) ◽  
pp. 7-7
Author(s):  
Mary S. Adix ◽  
Henrik A. Schutz

2005 ◽  
Vol 38 (1) ◽  
pp. 61-66
Author(s):  
G. De Tommasi ◽  
F. Piccolo ◽  
A. Pironti ◽  
F. Sartori

Author(s):  
Marcel Brand ◽  
Michael Witterauf ◽  
Éricles Sousa ◽  
Alexandru Tanase ◽  
Frank Hannig ◽  
...  

1994 ◽  
Vol 29 (1-2) ◽  
pp. 409-417 ◽  
Author(s):  
Andrea G. Capodaglio

According to the present state-of-the-art, sewerage systems, sewage treatment plants and their subsequent improvements are often planned and designed as totally separate entities, each subject to a specific set of performance objectives. As a result, sewage treatment efficiency is subject to considerable variability, depending both on general hydrologic conditions in the urban watershed (wet versus dry periods), and on specific “instantaneous” operating conditions. It has been postulated that the integration of urban drainage and wastewater treatment design and operation could allow minimization of the harmful effects of discharges from treatment plants, overflows and surface water runoff. This “ideal condition” can be achieved through the introduction of so-called “real-time control” technology in sewerage collection and treatment operations. To be a feasible goal, this technology poses the demand for more powerful simulation models of either aspect of the system - or, ideally, of a unified sewer-and-treatment plant model - than most of those currently available. This paper examines the requirements of rainfall/runoff transformation and sewer flow models with respect to real-time control applications, and focuses on the methodology of stochastic, transfer function modelling, reporting application examples. Modalities and limitations of the extraction of information from the models thus derived are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document