scholarly journals Possible Effects and Mechanisms of Ultrasonic Cavitation on Oxide Inclusions during Direct-Chill Casting of an Al Alloy

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 814 ◽  
Author(s):  
Yun Zhang ◽  
Ruiqing Li ◽  
Xiaoqian Li ◽  
Yilong Yang ◽  
Pinghu Chen ◽  
...  

Oxide films or inclusions can reduce the continuity and integrity of materials and they always lead to a significant reduction in the mechanical properties of an aluminum alloy. They can greatly reduce the plastic flow behavior of materials, thus affecting the subsequent processing performance. Therefore, an effective ultrasonic assisted preparation technology has been applied to industrial manufacturing of large-scale aluminum alloy ingots (with diameter: Φ = 1250 mm and height: h = 3750 mm). However, the mechanisms of ultrasonic purification on the large-scale ingots are not clear. Therefore, a number of aluminum alloy casting experiments were carried out to produce a conventional hot top semi-continuous ingot (CHTI) and an ultrasonic hot top semi-continuous ingot (UHTI) in this work. The microstructures of CHTI and UHTI were analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). The results indicated that there were some oxide film defects in the CHTI but some finely dispersed inclusion particles were discovered in the UHTI. The X-ray diffraction (XRD) data showed that the component of inclusion was Al2O3. According to the different cavitation effects of the different areas of the molten aluminum, the process of ultrasonic purification was divided into three periods and the mechanisms in each period were separately studied.

2001 ◽  
Vol 109 (1-2) ◽  
pp. 174-180 ◽  
Author(s):  
Jerry H Sokolowski ◽  
Mile B Djurdjevic ◽  
Christopher A Kierkus ◽  
Derek O Northwood

2021 ◽  
Vol 1033 ◽  
pp. 18-23
Author(s):  
Li Tong He ◽  
Yi Dan Zeng ◽  
Jin Zhang

To obtain an A356 aluminum alloy casting with a uniform structure and no internal shrinkage defects, ProCAST software is used to set different filling and solidification process parameters for an A356 aluminum alloy casting with large wall thickness differences, And multiple simulations are conducted to obtain optimized casting process; then, based on the process, the microstructure of the thickest and thinnest part of the casting are simulated. The size, morphology, and distribution of the simulated microstructure of the thinnest part and the thickest part of the casting are very similar. The simulated microstructure is similar to that of the actual casting. This shows that castings with uniform structure and no internal shrinkage defects can be obtained through the optimized casting process .


Sign in / Sign up

Export Citation Format

Share Document