scholarly journals Metabolomics Contributions to the Discovery of Prostate Cancer Biomarkers

Metabolites ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 48 ◽  
Author(s):  
Nuria Gómez-Cebrián ◽  
Ayelén Rojas-Benedicto ◽  
Arturo Albors-Vaquer ◽  
José López-Guerrero ◽  
Antonio Pineda-Lucena ◽  
...  

Prostate cancer (PCa) is one of the most frequently diagnosed cancers and a leading cause of death among men worldwide. Despite extensive efforts in biomarker discovery during the last years, currently used clinical biomarkers are still lacking enough specificity and sensitivity for PCa early detection, patient prognosis, and monitoring. Therefore, more precise biomarkers are required to improve the clinical management of PCa patients. In this context, metabolomics has shown to be a promising and powerful tool to identify novel PCa biomarkers in biofluids. Thus, changes in polyamines, tricarboxylic acid (TCA) cycle, amino acids, and fatty acids metabolism have been reported in different studies analyzing PCa patients’ biofluids. The review provides an up-to-date summary of the main metabolic alterations that have been described in biofluid-based studies of PCa patients, as well as a discussion regarding their potential to improve clinical PCa diagnosis and prognosis. Furthermore, a summary of the most significant findings reported in these studies and the connections and interactions between the different metabolic changes described has also been included, aiming to better describe the specific metabolic signature associated to PCa.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zheying Zhang ◽  
Huifang Zhu ◽  
Qian Li ◽  
Wuji Gao ◽  
Dan Zang ◽  
...  

Colorectal cancer (CRC) is one of the most prevalent malignant tumors worldwide. Colon adenocarcinoma (COAD) is the most common pathological type of CRC and several biomarkers related to survival have been confirmed. Yet, the predictive effect of a single gene biomarker is not enough. The tricarboxylic acid (TCA) cycle and carbon metabolism play an important role in tumors. Thus, we aimed to identify new gene signatures from the TCA cycle and carbon metabolism to better predict the survival of COAD. This study performed mRNA expression profiling in large COAD cohorts (n = 417) from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression and multivariate Cox regression analysis were performed, and receiver operating characteristic (ROC) curve was used to screen the variable combinations model which is most relevant to patient prognosis survival mostly. Univariable or multivariate analysis results showed that SUCLG2, SUCLG1, ACLY, SUCLG2P2, ATIC and ACO2 have associations with survival in COAD. Combined with clinical variables, we confirmed model 1 (AUC = 0.82505), most relevant to patient prognosis survival. Model 1 contains three genes: SUCLG2P2, SUCLG2 and ATIC, in which SUCLG2P2 and SUCLG2 were low-expressed in COAD, however, ATIC was highly expressed, and the expressions above are related to stages of CRC. Pearson analysis showed that SUCLG2P2, SUCLG2 and ATIC were correlated in normal COAD tissues, while only SUCLG2P2 and SUCLG2 were correlated in tumor tissues. Finally, we verified the expressions of these three genes in COAD samples. Our study revealed a possible connection between the TCA cycle and carbon metabolism and prognosis and showed a TCA cycle and carbon metabolism related gene signature which could better predict survival in COAD patients.


2019 ◽  
Author(s):  
Bongyong Lee ◽  
Iqbal Mahmud ◽  
John Marchica ◽  
Paweł Dereziński ◽  
Feng Qi ◽  
...  

AbstractSensitive and specific diagnostic and prognostic biomarkers for prostate cancer (PCa) are urgently needed. Urine samples are a non-invasive means to obtain abundant and readily accessible “liquid biopsies”. Herein we used urine liquid biopsies to identify and characterize a novel group of urine-enriched RNAs and metabolites in PCa patients and normal individuals with or without benign prostatic disease. Differentially expressed RNAs were identified in urine samples by deep sequencing and metabolites in urine were measured by mass spectrometry. The mRNA and metabolite profiles were distinct in patients with benign and malignant disease. Integrated analysis of urinary gene expression and metabolite signatures unveiled an aberrant glutamate metabolism and tricarboxylic acid (TCA) cycle node in prostate cancer-derived cells. Functional validation supports a role for glutamate metabolism and glutamate oxaloacetate transaminase 1 (GOT1)-dependent redox balance in prostate cancer, which can be exploited for novel biomarkers and therapies.


Author(s):  
Sek Ying Chair ◽  
Judy Yuet Wa Chan ◽  
Mary Miu Yee Waye ◽  
Ting Liu ◽  
Bernard Man Hin Law ◽  
...  

Patients with heart failure (HF) often present with signs and symptoms that are often nonspecific and with a wide differential diagnosis, making diagnosis and prognosis of HF by clinical presentation alone challenging. Our knowledge on genetic diversity is rapidly evolving with high-throughput DNA sequencing technology, which makes a great potential for genetic biomarker development. The present review attempts to provide a comprehensive review on the modification of major genetic components in HF patients and to explore the potential application of these components as clinical biomarkers in the diagnosis and in monitoring the progress of HF. The literature search was conducted using six databases, resulting in the inclusion of eighteen studies in the review. The findings of these studies were summarized narratively. An appraisal of the reporting quality of the included studies was conducted using a twelve-item checklist adapted from the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. The findings showed that changes in genetic components in patients with HF compared to healthy controls could be noninvasive diagnostic or prognostic tools for HF with higher specificity and sensitivity in comparison with the traditional biomarkers. This review provided evidence for the potential of developing genetic biomarkers of HF.


Sign in / Sign up

Export Citation Format

Share Document