scholarly journals Enhancing the Shock Response Performance of Micromachined Silicon Resonant Accelerometers by Electrostatic Active Damping Control

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1548
Author(s):  
Libin Huang ◽  
Kai Jiang ◽  
Peng Wang ◽  
Meimei Zhang ◽  
Xukai Ding ◽  
...  

This paper presents a micromachined silicon resonant accelerometer based on electrostatic active damping control, which can improve the shock response performance of the accelerometer. In the accelerometer, an electrostatic active damping structure and damping control circuit are designed to improve the equivalent damping coefficient of the system. System-level Simulink modeling and simulation of the accelerometer with an electrostatic active damping closed-loop control link were carried out. The simulation results indicate that the system can quickly return to normal output without an obvious vibration process after the shock. The fabricated and packaged accelerometer was connected to an external test circuit for shock performance testing. The stabilization time of the accelerometer after a 100 g, 3–5 ms half-sine shock was reduced from 19.8 to 5.6 s through use of the damping control. Furthermore, the change in deviation before and after the shock without damping control was 0.8197 mg, whereas it was 0.1715 mg with damping control. The experimental results demonstrate that the electrostatic active damping control can effectively improve the dynamic performance of the micromachined silicon resonant accelerometer.

2014 ◽  
Vol 986-987 ◽  
pp. 1169-1172
Author(s):  
Ping Wang ◽  
Meng Meng Cai

The LCL filter is widely applied as interface between grid-connected inverter and grid due to the preferable high frequency attenuation characteristic. Under the condition of weak grid, impedance value of grid model cannot be ignored, the existence of grid impedance results in different LCL resonant frequencies, which will arise challenges of traditional active damping control. Based on the analysis of band pass filter using active damping control strategy, an adaptive active damping control is proposed in this paper by introducing the application of active notch filter, which can adjust the position of negative resonance point adaptively so as to manage sudden grid changes. Theoretical analysis and simulation results presented on the platform of grid-connected PV inverter system indicate the effectiveness and adaptability of this active damping strategy.


PAMM ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Markus Burkhardt ◽  
Merlin Morlock ◽  
Robert Seifried ◽  
Peter Eberhard

Sign in / Sign up

Export Citation Format

Share Document