resonant accelerometer
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 43)

H-INDEX

17
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 641
Author(s):  
Yang Xiao ◽  
Feng Hu ◽  
Yuchen Zhang ◽  
Jiaxing Zheng ◽  
Shiqiao Qin

In this paper, a novel two-axis differential resonant accelerometer based on graphene with transmission beams is presented. This accelerometer can not only reduce the cross sensitivity, but also overcome the influence of gravity, realizing fast and accurate measurement of the direction and magnitude of acceleration on the horizontal plane. The simulation results show that the critical buckling acceleration is 460 g, the linear range is 0–89 g, while the differential sensitivity is 50,919 Hz/g, which is generally higher than that of the resonant accelerometer reported previously. Thus, the accelerometer belongs to the ultra-high sensitivity accelerometer. In addition, increasing the length and tension of graphene can obviously increase the critical linear acceleration and critical buckling acceleration with the decreasing sensitivity of the accelerometer. Additionally, the size change of the force transfer structure can significantly affect the detection performance. As the etching accuracy reaches the order of 100 nm, the critical buckling acceleration can reach up to 5 × 104 g, with a sensitivity of 250 Hz/g. To sum up, a feasible design of a biaxial graphene resonant accelerometer is proposed in this work, which provides a theoretical reference for the fabrication of a graphene accelerometer with high precision and stability.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1548
Author(s):  
Libin Huang ◽  
Kai Jiang ◽  
Peng Wang ◽  
Meimei Zhang ◽  
Xukai Ding ◽  
...  

This paper presents a micromachined silicon resonant accelerometer based on electrostatic active damping control, which can improve the shock response performance of the accelerometer. In the accelerometer, an electrostatic active damping structure and damping control circuit are designed to improve the equivalent damping coefficient of the system. System-level Simulink modeling and simulation of the accelerometer with an electrostatic active damping closed-loop control link were carried out. The simulation results indicate that the system can quickly return to normal output without an obvious vibration process after the shock. The fabricated and packaged accelerometer was connected to an external test circuit for shock performance testing. The stabilization time of the accelerometer after a 100 g, 3–5 ms half-sine shock was reduced from 19.8 to 5.6 s through use of the damping control. Furthermore, the change in deviation before and after the shock without damping control was 0.8197 mg, whereas it was 0.1715 mg with damping control. The experimental results demonstrate that the electrostatic active damping control can effectively improve the dynamic performance of the micromachined silicon resonant accelerometer.


2021 ◽  
Author(s):  
Ziji Wang ◽  
Chaoyang Xing ◽  
Jin Zhang ◽  
Zhaoxi Su ◽  
Wenqi Li ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1022
Author(s):  
Pengcheng Cai ◽  
Xingyin Xiong ◽  
Kunfeng Wang ◽  
Jiawei Wang ◽  
Xudong Zou

Resonant accelerometers are promising because of their wide dynamic range and long-term stability. With quasi-digital frequency output, the outputs of resonant accelerometers are less vulnerable to the noise from circuits and ambience. Differential structure is usually adopted in a resonant accelerometer to achieve higher sensitivity to acceleration and to reduce common noise at the same time. Ideally, a resonant accelerometer is only sensitive to external acceleration. However, temperature has a great impact on resonant accelerometers, causing unexcepted frequency drift. In order to cancel out the frequency drift caused by temperature change, an improved temperature compensation method for differential vibrating accelerometers without additional temperature sensors is presented in this paper. Experiment results demonstrate that the temperature sensitivity of the prototype sensor is reduced from 43.16 ppm/°C to 0.83 ppm/°C within the temperature range of −10 °C to 70 °C using the proposed method.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 530
Author(s):  
Yan Li ◽  
Biao Jin ◽  
Mengyu Zhao ◽  
Fuling Yang

This study aims to develop methods to design and optimize the resonator in a resonant accelerometer based on mode and frequency analysis. First, according to the working principle of a resonant accelerometer, the resonator is divided into three parts: beam I, beam II, and beam III. Using Hamilton’s principle, the undamped dynamic control equation and the ordinary differential dynamic equation of the resonant beam are obtained. Moreover, the structural parameters of the accelerometer are designed and optimized by using resonator mode and frequency analysis, then using finite element simulation to verify it. Finally, 1 g acceleration tumbling experiments are built to verify the feasibility of the proposed design and optimization method. The experimental results demonstrate that the proposed accelerometer has a sensitivity of 98 Hz/g, a resolution of 0.917 mg, and a bias stability of 1.323 mg/h. The research findings suggest that according to the resonator mode and frequency analysis, the values of the resonator structural parameters are determined so that the working mode of the resonator is far away from the interference mode and avoids resonance points effectively. The research results are expected to be beneficial for a practical resonant sensor design.


Sign in / Sign up

Export Citation Format

Share Document