scholarly journals Qualitative and Quantitative Characteristics of Soil Microbiome of Barents Sea Coast, Kola Peninsula

2021 ◽  
Vol 9 (10) ◽  
pp. 2126
Author(s):  
Maria Korneykova ◽  
Dmitry A. Nikitin ◽  
Vladimir А. Myazin

The soil microbiome of the Barents Sea coast of the Kola Peninsula is here characterized for the first time. The content of copies of ribosomal genes of archaea, bacteria, and fungi was determined by real-time PCR. Reserves and structure of biomass of soil microorganisms such as total biomass of fungi and prokaryotes, length and diameter of mycelium of fungi and actinomycetes, proportion of mycelium in biomass, number of spores and prokaryotic cells, proportion of small and large fungal propagules, and morphology of mycobiota spores were determined. The largest number of ribosomal gene copies was found for bacteria (from 6.47 × 109 to 3.02 × 1011 per g soil). The number of copies of ribosomal genes of fungi and archaea varied within 107–109 copies of genes/g soil. The biomass of microorganisms (prokaryotes and fungi in total) varied from 0.023 to 0.840 mg/g soil. The share of mycobiota in the microbial biomass ranged from 90% to 97%. The number of prokaryotes was not large and varied from 1.87 × 108 to 1.40 × 109 cells/g of soil, while the biomass of fungi was very significant and varied from 0.021 to 0.715 mg/g of soil. The length of actinomycete mycelium was small—from 0.77 to 88.18 m/g of soil, as was the length of fungal hyphae—an order of magnitude higher (up to 504.22 m/g of soil). The proportion of fungal mycelium, an active component of fungal biomass, varied from 25% to 89%. Most (from 65% to 100%) of mycobiota propagules were represented by specimens of small sizes, 2–3 microns. Thus, it is shown that, despite the extreme position on the mainland land of Fennoscandia, local soils had a significant number of microorganisms, on which the productivity of ecosystems largely depends.

2021 ◽  
Author(s):  
Maria Korneykova ◽  
Dmitriy Nikitin ◽  
Andrey Dolgikh ◽  
Viacheslav Vasenev

<p>The anthropogenic impact on soil microbiota in polar climate remains overlooked and the comparison between microbiota in urban and natural soils in polar regions are highly interesting. Fungi are the key components of soil microbiota, responsible for improtant functions and ecsystem services and highly senstive to direct (e.g., pollution) and indirect (e.g., urban heat island) anthropogenic effects. Urban soils of Murmanks (68.967 N, 33.083 E) – the biggest polar city in the world – were studied in comparison to Podzols of the natural forest-tundra area. Soil fungi in urban and natural soils were analyzed by luminescence microscopy and PCR real time.</p><p>The fungal biomass in the upper horizon of Technosol varied from 0.50 to 0.75 mg/g of soil, which was 1.5-2 times less than in Podzol. Different profile distribution of fungal biomass was shown for urban and natural soils. In natural Podzol, the highest fungal biomass was observed in the upper organic O horizon, then decreased in the topsoil mineral elluvial E horizon, and then slightly increased in the subsoil mineral illuvial Bs horizon. In urban soils, the second maximum of number of fungi in the soil profile was not found. The biomass of fungi decreased exponentially in the soil profile.</p><p>The number of ITS ribosomal gene copies of fungi in the topsoil organic horizon of natural Podzol reached 10<sup>10</sup>gene copies/g of soil. In urban soils, there was a decrease in their number by 6 or more times. The number of fungal gene copies decreased sharply down the soil profile in both urban and natural soils. So, if the number of fungi in topsoil horizons was about 10<sup>8</sup>-10<sup>10</sup> gene copies /g of soil, in subsoil horizons it was 10<sup>6</sup>-10<sup>7</sup> gene copies/g of soil. First of all, this may be due to the mycorrhizal mycobiota, which has the largest extent of mycelium in the topsoil horizons of soil. In forest soil, the number of gene copies in horizon E was 37 times less than in the topsoil horizon; in urban soil, the content of gene copies in the subsoil BC horizon is 10 times less than in the topsoil horizon.</p><p>The proportion of fungal mycelium varied from 28 to 80%. A minimum of mycelium was found in the subsoil horizons, while the topsoil horizons were abundant with fungal hyphae, the length of which in them reached more than 160 m/g of soil. The maximum amount of mycelium (581.72 m/g of soil) was observed in natural Podzol. The number of single-celled fungal propagules (spores and yeasts) was 10<sup>4</sup>-10<sup>5</sup> cells/g of soil. Most of the propagules are represented by small-sized forms (2-3 microns), the proportion of which increased from the topsoil horizons (68-93%) to the deep ones (up to 100%). This trend was observed for both urban and background soils. Large propagules with a diameter of 5-7 microns were found exclusively in the topsoil horizons, and their number is no more than 10<sup>3</sup> cells/g of soil.</p><p><strong>Acknowledgements </strong>This research was supported by<strong> </strong>state task AAAA-A18-118021490070-5 and Russian Foundation for Basic Research project № 19-29-05187.</p>


2021 ◽  
Vol 55 (2) ◽  
pp. 427-438
Author(s):  
O. A. Belkina ◽  
A. A. Vilnet

Specimens of the rare species Cynodontium suecicum (Rhabdoweisiaceae, Bryophyta) were collected near Drozdovka Bay on the Barents Sea coast of the Kola Peninsula (Russia) in 2016. They were compared with samples of C. suecicum from the Teriberka area (also the coast of the Barents Sea) gathered in 1977 by R. N. Schljakov. The morphological features of both groups of samples were studied, and nucleotide sequence data for ITS1-2 nrDNA and trnL-F cpDNA were obtained. Molecular analysis suggested C. suecicum as a hybrid that inherited cytoplasmic DNA from C. tenellum and nuclear DNA from Kiaeria blyttii. Taking into account the rather clear morphological delimitation against other species, combined with the stability of genetic characters, we believe that S. suecicum should be retained as a species-level taxon.


2021 ◽  
Vol 100 (sp1) ◽  
Author(s):  
Charles W. Finkl ◽  
Christopher Makowski

2020 ◽  
Vol 11 (5-2020) ◽  
pp. 37-50
Author(s):  
M.P. Venger ◽  

The structural characteristics of bacterioplankton were studied in the waters of the Cape`s Nordkap (cut I) and Zuydkap (cut II) of Mezhvezhiy island. Its abundance and biomass in the upper part of the photic layer of coastal and Atlantic waters in cut I was comparable and increased from the late spring to the summer season. Moreover, in cuts I and II, the values of summer maximum corresponded to the zone of the Polar Front and adjacent Arctic waters. By the beginning of the winter season, the level of development of communities in waters of different genesis decreased everywhere, but still did not reach the minimum, observed insummer in layers deeper than 200 m. The structure of bacterioplankton was determined by single cells of the smallest size, mainly of a cocci-form. The arrival of rod-shaped bacteria (contribution to the total biomass could reach 50%) was recorded in the summer period.


2015 ◽  
Vol 35 ◽  
pp. 9 ◽  
Author(s):  
Andrey Sikorski ◽  
Lyudmila Pavlova

<p>The species <em>Scolelepis finmarchicus</em> sp. nov. is described from the Norwegian and Barents Seas along the northern Norwegian coast and Kola peninsula. The occurrence of this species in the Kola Bay could be seen as a sign of climate warming in the area. Taxonomic issues existing in the genus <em>Scolelepis</em> within the area along the Norwegian coast and in the Barents Sea are briefly touched upon. Seven species belonging to <em>Scolelepis</em> have recently been recorded from the Atlantic sector of the Arctic. <em>Scolelepis</em> (<em>S</em>.) <em>matsugae</em> Sikorski, 1994 is newly synonymized with <em>S</em>. (<em>S</em>.) <em>laonicola</em> (Tzetlin, 1985). This article provides a brief review of <em>Scolelepis</em> together with an identification key for the genus from the Atlantic sector of the Arctic</p>


2010 ◽  
Vol 35 (5) ◽  
pp. 333-340 ◽  
Author(s):  
N. I. Golubeva ◽  
L. V. Burtseva ◽  
V. A. Ginzburg

1996 ◽  
Vol 271 (20) ◽  
pp. 11852-11857 ◽  
Author(s):  
Vesco J. Mutskov ◽  
Valya R. Russanova ◽  
Stefan I. Dimitrov ◽  
Iliya G. Pashev
Keyword(s):  

2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander A. Zaytsev ◽  
◽  
Andrey P. Yakovlev ◽  
Miron V. Pakhomov ◽  
◽  
...  
Keyword(s):  

Author(s):  
Евгений Александрович Боровичев ◽  
Анна Владимировна Разумовская ◽  
Ольга Александровна Белкина ◽  
Роман Павлович Обабко ◽  
Evgeny Borovichev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document