summer maximum
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 2)

MAUSAM ◽  
2021 ◽  
Vol 49 (1) ◽  
pp. 95-102
Author(s):  
Y. E. A. RAJ

Forecasting schemes based on statistical techniques have been developed to forecast daily summer (March-May) maximum temperatures of Madras. A set of optimal number of predictors were chosen from a large number of parameters by employing stepwise forward screening. Separate forecasting schemes for Madras city and airport, with lead time of 24 and 9 hr were developed from the data of 12 years and tested in an independent sample of 4 years. Maximum temperature of the previous day, normal daily maximum temperature, temperature advection index and morning zonal wind at Madras at 900 hPa level were among the predictors selected. The schemes yielded good results providing 77-87% correct, forecasts with skill scores of 0.29-0.57.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1629
Author(s):  
Thomas Agyei ◽  
Stanislav Juráň ◽  
Magda Edwards-Jonášová ◽  
Milan Fischer ◽  
Marian Švik ◽  
...  

In order to understand the effect of phytotoxic tropospheric ozone (O3) on terrestrial vegetation, we quantified the impact of current O3 concentration ([O3]) on net ecosystem production (NEP) when compared to the conditions of the pre-industrial era. We compared and tested linear mixed-effects models based on [O3] and stomatal O3 flux (Fsto). The managed ryegrass–clover (Lolium perenne and Trifolium pratense) mixture was grown on arable land in the Czech Republic, Central Europe. Values of [O3] and Fsto were measured and calculated based on resistance analogy, respectively, while NEP was calculated from eddy covariance CO2 fluxes. We found the Fsto-based model more precise when compared to measured NEP. High Fsto was found even at low [O3], while broad summer maximum of [O3] was not necessarily followed by significant NEP decline, due to low soil water content leading to a low stomatal conductivity and Fsto. Comparing to low pre-industrial O3 conditions, current levels of O3 resulted in the reduction of cumulative NEP over the entire growing season, up to 29.7 and 13.5% when the [O3]-based and Fsto-based model was applied, respectively. During the growing season, an O3-induced reduction of NEP ranged between 13.1% in May and 26.2% in July when compared to pre-industrial Fsto levels. Looking to the future, high [O3] and Fsto may lead to the reduction of current NEP by approximately 13.3% on average during the growing season, but may increase by up to 61–86.6% in autumn, indicating further O3-induced acceleration of the senescence. These findings indicate the importance of Fsto and its inclusion into the models estimating O3 effects on terrestrial vegetation. The interaction between environmental factors and stomatal conductance is therefore discussed in detail.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3439
Author(s):  
Iwona Markiewicz

The Upper Vistula Basin is a flood-prone region in the summer season (May–October) due to intensive rainfall. From the point of view of water management, it is particularly important to assess the variability in this main factor of flood risk, as well as to establish the depth–duration–frequency (DDF) relationship for maximum precipitation, this having not yet been derived for the region. The analysis of a 68-year (1951–2018) data series of summer maximum precipitation collected by 11 meteorological stations showed the series’ stationarity, which supports the conclusion that there is no increase in the risk of rainfall floods due to the intensification of extreme precipitation. A new approach is proposed for the determination of the DDF relationship, where the best-fitted distribution for each station is selected from among the set of candidate distributions, instead of adopting one fixed distribution for all stations. This approach increases the accuracy of the DDF relationships for individual stations as compared to the commonly used approach. In particular, the traditionally used Gumbel distribution turns out to be not well fitted to the investigated data series, and the advantage of the recently popular GEV distribution is not significant.


Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 593-614
Author(s):  
Luca Possenti ◽  
Ingunn Skjelvan ◽  
Dariia Atamanchuk ◽  
Anders Tengberg ◽  
Matthew P. Humphreys ◽  
...  

Abstract. We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea from March to October 2014. The optode measurements required drift and lag correction and in situ calibration using discrete water samples collected in the vicinity. We found that the optode signal correlated better with the concentration of CO2, c(CO2), than with its partial pressure, p(CO2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon content, c(DIC), which had a standard deviation of 11 µmol kg−1 compared with in situ measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift corrected and calibrated using a c(O2) climatology for deep samples. The calibrated data enabled the calculation of DIC- and O2-based net community production, N(DIC) and N(O2). To derive N, DIC and O2 inventory changes over time were combined with estimates of air–sea gas exchange, diapycnal mixing and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, we found N(DIC) = (21±5) mmol m−2 d−1, N(O2) = (94±16) mmol m−2 d−1 and an (uncalibrated) Chl a peak concentration of craw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, associated with N(DIC) = (85±5) mmol m−2 d−1 and N(O2) = (126±25) mmol m−2 d−1. The high-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the material produced during the period of increased Chl a inventory decreased N(DIC) to (-3±5) mmol m−2 d−1 and N(O2) to (0±2) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters influenced by the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). The NCC was characterised by lower c(O2) and c(DIC) than the NwAC, as well as lower N(O2) and craw(Chl a) but higher N(DIC). Our results show the potential of glider data to simultaneously capture time- and depth-resolved variability in DIC and O2 concentrations.


2021 ◽  
Vol 56 (7-8) ◽  
pp. 2389-2412
Author(s):  
Antonello A. Squintu ◽  
Gerard van der Schrier ◽  
Else van den Besselaar ◽  
Eveline van der Linden ◽  
Dian Putrasahan ◽  
...  

AbstractSimulation of past climate is an important tool for the validation of climate models. The comparison with observed daily values allows us to assess the reliability of their projections on climatic extremes in a future climate. The frequency and amplitude of extreme events are fundamental aspects that climate simulations need to reproduce as they have high impacts on economy and society. The ability to simulate them will help policy makers in taking better measures to face climate change. This work aims at evaluating how six models within the High Resolution Model Intercomparison Project reproduce the trends on extreme indices as they have been observed over Europe in the 1970–2014 period. Observed values are provided by the new homogenized version of the E-OBS gridded dataset. The comparison is performed through the use of indices based on seasonal averages and on exceedances of percentile-based thresholds, focusing on six subregions. Winter-average minimum temperature is generally underestimated by models (down to − 4 °C difference over Italy and Norway) while simulated trends in seasonal averages and extreme values are found to be too cold on Eastern Europe and too warm on Iberia and Southern Europe (e.g. up to a difference of − 4% per decade on the number of Cold Nights over Spain). On the other hand the models tend to overestimate summer maximum temperatures averages in the Mediterranean Area (up to + 5 °C over the Balkans) and underestimate these at higher latitudes. Iberia, Southern and Eastern Europe are simulated with too low trends in average summer temperatures. The simulated trends are too strong on the North West part and too weak on the South East part of Europe (down to − 3%/decade on the number of Warm Days over Italy and Western Balkans). These results corroborate the findings of previous studies about the underestimation of the warming trends of summer temperatures in Southern Europe, where these are more intense and have more impacts. The high-resolution versions of the models are compared to their lower-resolution counterparts, similar to those used in the CMIP5, showing a slight improvement for the simulation of extreme winter minimum temperatures, while no significant progresses have been found for extreme summer maximum temperatures.


2021 ◽  
Author(s):  
Mykhailo Savenets ◽  
Larysa Pysarenko

<p>Wildfires remain among the most challenging problems in Ukraine. Each year numerous cases of open burning contribute to huge carbon emissions and turn into forest fires. Using the Global Fire Emissions Database (GFED4), there were studied an average burned fraction in Ukraine, which equals of about 0.2-0.3. 90% of wildfires appeared on agricultural lands. The total contribution to carbon emissions is 0.2-1.0 g·m<sup>2</sup>·month<sup>-1</sup> with the increasing trend of about 1-2 g·m<sup>2</sup>·month<sup>-1</sup> per decade. There are three periods with the highest carbon emissions: April, July-August and September-October. While a summer maximum is corresponding to unfavorable temperature and moisture regimes, the main reason of wildfires in spring and autumn is the agricultural open burning. Based on the Sentinel-5P data, it was found that wildfires significantly change the seasonality of carbon monoxide (CO) variations. If maximal CO content is mainly observed in winter at the end of the heating season, in Ukraine the highest CO values continue to exist in April until the open burning stops and the resulting forest fires are extinguished. Wildfires caused the CO content increase to 4.0–5.0 mol·m<sup>-2</sup> which is comparable to the most polluted Ukrainian industrial cities. As a result, air quality deterioration observed at the distances more than 200 km from the burned areas. Using the Enviro-HIRLAM simulations, there were estimated black carbon (BC) distribution, which showed elevated content within the lowest 3-km layer. BC content reaches 600 ppbm near the active fires, 150 ppbm at the distance up to 100 km and 30 ppbm at the distance of about 200-500 km.</p>


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 465
Author(s):  
Raquel Ausejo ◽  
Juan Manuel Martínez ◽  
Pedro Soler-Llorens ◽  
Alfonso Bolarín ◽  
Teresa Tejedor ◽  
...  

There are numerous cases when conventional spermiogram parameters are all within an acceptable range but boar subfertility persists. The total sperm nuclear DNA fragmentation index (tDFI) is a trait related to fertility and prolificacy problems that is not routinely evaluated in commercial AI boars. The aim of this research was to study the effect of the photoperiod, season and reproductive age of the boar on tDFI (measured by SCSA) of 1279 ejaculates from 372 different boars belonging to 6 different breeds located in 6 AI studs in Spain. tDFI data ranged from 0.018% to 20.1%. Although there was a significant single boar effect in the tDFI occurrence, a negative correlation between the tDFI and the age of the boar was found (p < 0.001). tDFI would decrease due to aging of the boar 0.66% each year old within the observed age range. After including age as a covariate in the ANCOVA, no differences were found in tDFI between photoperiods when the sperm collection date was evaluated. However, when the date of the production of semen in the testis was evaluated, the total percentage of spermatozoa with fragmented nuclear DNA was 1.46% higher in the increasing photoperiod in comparison to the decreasing photoperiod (p < 0.0001). On the other hand, for both dates, the lowest tDFI values corresponded to minimum day length for decreasing photoperiod phase (autumn), while the highest tDFI values were found in summer (maximum day length for decreasing photoperiod phase).


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 355 ◽  
Author(s):  
Morgan Gray ◽  
Elisabeth Micheli ◽  
Tosha Comendant ◽  
Adina Merenlender

Climate-wise connectivity is essential to provide species access to suitable habitats in the future, yet we lack a consistent means of quantifying climate adaptation benefits of habitat linkages. Species range shifts to cooler climates have been widely observed, suggesting we should protect pathways providing access to cooler locations. However, in topographically diverse regions, the effects of elevation, seasonality, and proximity to large water bodies are complex drivers of biologically relevant temperature gradients. Here, we identify potential terrestrial and riparian linkages and their cooling benefit using mid-century summer and winter temperature extremes for interior coastal ranges in Northern California. It is rare for the same area to possess both terrestrial and riparian connectivity value. Our analysis reveals distinct differences in the magnitude and orientation of cooling benefits between the summer maximum and winter minimum temperatures provided by the linkages we delineated for the area. The cooling benefits for both linkage types were maximized to the west during summer, but upslope and to the northeast during winter. The approach we employ here provides an improved method to prioritize climate-wise connectivity and promote landscape resilience for topographically diverse regions.


2020 ◽  
Vol 85 (4) ◽  
pp. 676-693
Author(s):  
Ian Hutchinson

Radiocarbon ages on mollusk shells, which account for about half of the more than 8,000 dates from cultural deposits on the west coast of North America, need to be corrected for the local marine reservoir effect (ΔR) to yield true ages. Assays on “prebomb” shells show that ΔR increases poleward, echoing the age gradient in offshore waters. The meridional gradient in ΔR is not appreciably affected by the transition either from an upwelling regime to a downwelling regime north of 40°N–45°N or from a winter maximum-high alkalinity river discharge pattern to a summer maximum-low alkalinity pattern at the same latitude, probably because these changes are offset by increasing storminess and tidal energy in coastal areas. Mesoscale variations in ΔR along this gradient are attributable to contrasts in shore morphology and exposure. Data from 123 shell-wood pairs reveal similar patterns of temporal variation in ΔR in the late Holocene in the coastal ecoregions. The characteristic temporal pattern echoes phases of variable El Niño-Southern Oscillation (ENSO) activity. The high degree of variability in ΔR argues against the indiscriminate application of regionally uniform or trans-Holocene ΔR values and demands improvements in spatiotemporal resolution if shell is used to date cultural deposits.


Sign in / Sign up

Export Citation Format

Share Document