scholarly journals Legionella Occurrence beyond Cooling Towers and Premise Plumbing

2021 ◽  
Vol 9 (12) ◽  
pp. 2543
Author(s):  
David Otto Schwake ◽  
Absar Alum ◽  
Morteza Abbaszadegan

Legionella is an environmental pathogen that is responsible for respiratory disease and is a common causative agent of water-related outbreaks. Due to their ability to survive in a broad range of environments, transmission of legionellosis is possible from a variety of sources. Unfortunately, a disproportionate amount of research that is devoted to studying the occurrence of Legionella in environmental reservoirs is aimed toward cooling towers and premise plumbing. As confirmed transmission of Legionella has been linked to many other sources, an over-emphasis on the most common sources may be detrimental to increasing understanding of the spread of legionellosis. This review aims to address this issue by cataloguing studies which have examined the occurrence of Legionella in less commonly investigated environments. By summarizing and discussing reports of Legionella in fresh water, ground water, saltwater, and distribution system drinking water, future environmental and public health researchers will have a resource to aid in investigating these pathogens in relevant sources.

2002 ◽  
Vol 2 (1) ◽  
pp. 319-324
Author(s):  
M.M. Critchley ◽  
N.J. Cromar ◽  
N. McClure ◽  
H.J. Fallowfield

This study investigated the potential for distribution system biofilm bacteria to elevate copper concentrations in drinking water. Biofilms were sampled from household copper reticulation pipes and grown on R2A agar. Laboratory coupon experiments were used to determine the effect of single isolate biofilms on aqueous copper concentrations. The majority of biofilm bacteria did not affect copper concentrations in comparison to sterile controls. However, several bacteria including Acidovorax delafieldii, Cytophaga johnsonae and Micrococcus kristinae were shown to significantly elevate copper concentrations in drinking water. In contrast, the bacteria Rhodococcus sp. and Xanthomonas maltophilia were shown to significantly decrease copper levels in comparison to controls. The significance of biofilm bacteria to increase copper concentrations in drinking water has implications for public health by increasing concentrations to levels toxic to humans.


2018 ◽  
Author(s):  
Marcel Belaval ◽  
◽  
Joseph D. Ayotte ◽  
Ian Carlisle ◽  
Ryan P. Gordon ◽  
...  

Author(s):  
Atkeeya Tasneem ◽  
Tanvir Ahmed ◽  
Md. Khabir Uddin

Contamination of drinking water by Arsenic (As) & Iron (Fe) is nowadays appeared as a big concern for public health and environment as well. Immoderate and continued revelation of inorganic arsenic along with drinking water is triggering arsenicosis. High Fe and As concentration found in the study area is also appeared as very challenging to those people who are consuming the water on regular basis and they may confront to a high health risk. This study is conducted to determine the concentration of Fe and As in ground tube-well containing possible health risk in Bangladesh which examines the ground water As and Fe scenario of Singair Upazila, Manikganj district. Total 40 samples were collected from the study area. As and Fe were analyzed using Atomic Absorption Spectrophotometer (AAS). The study found As concentration ranged from 0.0011 to 0.0858 mg/L with the mean concentration as 0.04186 mg/L. Concentration of Fe was found 0.175 to 13.865 mg/L with the mean concentration as 3.600 mg/L whereas WHO standard level is 0.01 mg/L for As and 0.3 mg/l for Fe. It was also noticed that As and Fe concentration in shallow tube-well was relatively high than that in deep tube-well and a strong correlation between As and Fe was marked in the ground water. Therefore, to cope with this challenge, people should look for other sources or relocate the tube-well or treat the water for drinking and other everyday purposes.


2016 ◽  
Vol 2 (2) ◽  
pp. 245-249 ◽  
Author(s):  
C. Kimloi Gomez-Smith ◽  
David T. Tan ◽  
Danmeng Shuai

We highlight determinants and functions of the drinking water microbiome in water treatment processes, distribution system biofilms, and premise plumbing components.


2001 ◽  
Vol 1 (4) ◽  
pp. 247-252 ◽  
Author(s):  
M.M. Critchley ◽  
H.J. Fallowfield

This study investigated the potential for distribution system biofilm bacteria to elevate copper concentrations in drinking water. Biofilms were sampled from household copper reticulation pipes and grown on R2A agar. Laboratory coupon experiments were used to determine the effect of single isolate biofilms on aqueous copper concentrations. The majority of biofilm bacteria did not affect copper concentrations in comparison to sterile controls. However, several bacteria including Acidovorax delafieldii, Cytophaga johnsonae and Micrococcus kristinae were shown to significantly elevate copper concentrations in drinking water. In contrast, the bacteria Rhodococcus sp. and Xanthomonas maltophilia were shown to significantly decrease copper levels in comparison to controls. The significance of biofilm bacteria to increase copper concentrations in drinking water has implications for public health by increasing concentrations to levels toxic to humans.


2012 ◽  
Vol 79 (3) ◽  
pp. 825-834 ◽  
Author(s):  
Paul W. J. J. van der Wielen ◽  
Dick van der Kooij

ABSTRACTThe multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereasLegionella pneumophila,Pseudomonas aeruginosa,Stenotrophomonas maltophilia, andAspergillus fumigatuswere sporadically observed.Mycobacterium aviumcomplex andAcanthamoebaspp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM andS. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or onP. aeruginosa- andS. maltophilia-positive samples. However,L. pneumophilawas detected more often in water with AOC concentrations above 10 μg C liter−1than in water with AOC levels below 5 μg C liter−1. Finally, samples that containedL. pneumophila,P. aeruginosa, orS. maltophiliawere more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.


Sign in / Sign up

Export Citation Format

Share Document