scholarly journals Chiral Stationary Phases for Liquid Chromatography: Recent Developments

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 865 ◽  
Author(s):  
Joana Teixeira ◽  
Maria Elizabeth Tiritan ◽  
Madalena M. M. Pinto ◽  
Carla Fernandes

The planning and development of new chiral stationary phases (CSPs) for liquid chromatography (LC) are considered as continuous and evolutionary issues since the introduction of the first CSP in 1938. The main objectives of the development strategies were to attempt the improvement of the chromatographic enantioresolution performance of the CSPs as well as enlarge their versatility and range of applications. Additionally, the transition to ultra-high-performance LC were underscored. The most recent strategies have comprised the introduction of new chiral selectors, the use of new materials as chromatographic supports or the reduction of its particle size, and the application of different synthetic approaches for preparation of CSPs. This review gathered the most recent developments associated to the different types of CSPs providing an overview of the relevant advances that are arising on LC.

2018 ◽  
Vol 11 (2) ◽  
pp. 114-119 ◽  
Author(s):  
Anna Lomenova ◽  
Katarína Hroboňová ◽  
Terézia Šolónyová

Abstract Panthenol is a biologically active compound closely related to vitamin B5 (pantothenic acid). This work deals with the separation of panthenol enantiomers using high performance liquid chromatography. Different types of chiral stationary phases (β-cyclodextrin, isopropyl carbamate cyclofructan 6, amylose tris(3,5-dimethylphenylcarbamate)) were tested in normal phase separation mode. Effect of mobile phase composition on the resolution and retention of enantiomers was studied. Two types of detectors, low-wavelength UV and polarimetric, were used. The optimal chromatographic system includes a chiral stationary phase based on amylose and a mobile phase of hexane/ethanol (60/40, v/v) where the resolution of enantiomers reached the value Rs = 2.49. Suitable chromatographic conditions were applied for the determination of panthenol enantiomers in samples of pharmaceutical preparations with the obtained recovery of more than 92 %. Linearity of the high performance liquid chromatography method with spectrophotometric detection was from 1.0 × 10−3 to 1.3 mg mL−1 (R2 = 0.998), with the limit of detection of 0.3 × 10−3 mg mL−1 for both enantiomers.


2021 ◽  
Vol 14 (12) ◽  
pp. 1250
Author(s):  
Takafumi Onishi ◽  
Weston J. Umstead

The increased use and applicability of Cannabis and Cannabis-derived products has skyrocketed over the last 5 years. With more and more governing bodies moving toward medical and recreational legalization, the need for robust and reliable analytical testing methods is also growing. While many stationary phases and methods have been developed for this sort of analysis, chiral stationary phases (CSPs) are unique in this area; not only can they serve their traditional chiral separation role, but they can also be used to perform achiral separations. Given that mixtures of cannabinoids routinely contain enantiomers, diastereomers, and structural isomers, this offers an advantage over the strictly achiral-only analyses. This work presents the separation of a 10-cannabinoid mixture on several polysaccharide-based sub-2 µm CSPs with both normal-phase and reversed-phase ultra-high-performance liquid chromatography (UHPLC) conditions. Along with the separation of the mixture, appropriate single-peak identification was performed to determine the elution order and reported where applicable.


Sign in / Sign up

Export Citation Format

Share Document