scholarly journals Rapid and Quantitative Determination of Sildenafil in Cocktail Based on Surface Enhanced Raman Spectroscopy

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1790 ◽  
Author(s):  
Lei Lin ◽  
Fangfang Qu ◽  
Pengcheng Nie ◽  
Hui Zhang ◽  
Bingquan Chu ◽  
...  

Sildenafil (SD) and its related compounds are the most common adulterants found in herbal preparations used as sexual enhancer or man’s virility products. However, the abuse of SD threatens human health such as through headache, back pain, rhinitis, etc. Therefore, it is important to accurately detect the presence of SD in alcoholic beverages. In this study, the Opto Trace Raman 202 (OTR 202) was used as a surface-enhanced Raman spectroscopy (SERS) active colloids to detect SD. The results demonstrated that the limit of detection (LOD) of SD was found to be as low as 0.1 mg/L. Moreover, 1235, 1401, 1530, and 1584 cm−1 could be qualitatively determined as SD characteristic peaks. In a practical application, SD in cocktail could be easily detected using SERS based on OTR 202. Also, there was a good linear correlation between the intensity of Raman peaks at 1235, 1401, 1530, and 1584 cm−1 and the logarithm of SD concentration in cocktail was in the range of 0.1–10 mg/L (0.9822 < R2 < 0.9860). The relative standard deviation (RSD) was less than 12.7% and the recovery ranged from 93.0%–105.8%. Moreover, the original 500–1700 cm−1 SERS spectra were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS spectra and SD content in cocktail and the highest determination coefficient (Rp2) reached 0.9856. In summary, the SD in cocktail could be rapidly and quantitatively determined by SERS, which was beneficial to provide a rapid and accurate scheme for the detection of SD in alcoholic beverages.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1874
Author(s):  
Ting-Tiao Pan ◽  
Mei-Ting Guo ◽  
Wang Guo ◽  
Ping Lu ◽  
De-Yu Hu

Residual pesticides are one of the major food safety concerns around the world. There is a demand for simple and reliable methods to monitor pesticide residues in foods. In this study, a sensitive method for determination of pymetrozine in apple and cabbage samples using surface-enhanced Raman spectroscopy (SERS) based on decanethiol functionalized silver nanoparticles was established. The proposed method performed satisfactorily with the linear detection range of 0.01–1.00 mg/L and limit of detection (LOD) of 0.01 mg/L in methanol. In addition, it was successfully used to detect pymetrozine in apple and cabbage samples, the LOD was 0.02 and 0.03 mg/L, respectively, and the recoveries of spiked cabbage and apple ranged 70.40–104.00%, with relative standard deviations below 12.18% and 10.33% for intra-day and inter-day tests. Moreover, the results of the correlation test with real cabbage samples of liquid chromatography-tandem mass spectrometry showed that they were highly correlated (slope = 0.9895, R2 = 0.9953). This study provides a sensitive approach for detection of pymetrozine in apple and cabbage, which has great potential for determination of pymetrozine residues in food products.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lu Pei ◽  
Yiqun Huang ◽  
Chunying Li ◽  
Yuanyuan Zhang ◽  
Barbara A. Rasco ◽  
...  

Silver-coated gold bimetallic nanoparticles were synthesized and used as substrates for surface-enhanced Raman spectroscopy (SERS) in detecting prohibited triphenylmethane drugs (including crystal violet and malachite green) in fish muscle. The optical properties and physical properties of bimetallic nanospheres were characterized by UV-Vis spectroscopy and transmission electron microscopy. The optimal nanospheres selected had relatively uniform size (diameter: 33 ± 3 nm) with a silver layer coated on the surface of gold seed (diameter: 18 ± 2 nm). For both crystal violet and malachite green, characteristic SERS spectral features could be identified at concentration as low as 0.1 μg/L with these bimetallic nanospheres. Crystal violet and malachite green residues in fish muscle could also be detected at levels as low as 0.1 ng/g, which could meet the most restricted regulatory requirements for the limit of detection in terms of analytical methods for crystal violet or malachite green in fish muscle. This study provides a basis for applying SERS technology with bimetallic nanoparticles to the identification of trace amounts of prohibited substances in aquatic food products, and the methodology could be extended to analyses of other hazardous chemicals in complex food matrices like vegetables and meats.


2011 ◽  
Vol 78 (6) ◽  
pp. 1930-1935 ◽  
Author(s):  
Suzanne L. Hennigan ◽  
Jeremy D. Driskell ◽  
Naola Ferguson-Noel ◽  
Richard A. Dluhy ◽  
Yiping Zhao ◽  
...  

ABSTRACTMycoplasma gallisepticumis a bacterial pathogen of poultry that is estimated to cause annual losses exceeding $780 million. The National Poultry Improvement Plan guidelines recommend regular surveillance and intervention strategies to containM. gallisepticuminfections and ensure mycoplasma-free avian stocks, but several factors make detection ofM. gallisepticumand diagnosis ofM. gallisepticuminfection a major challenge. Current techniques are laborious, require special expertise, and are typically plagued by false results. In this study, we describe a novel detection strategy which uses silver nanorod array–surface-enhanced Raman spectroscopy (NA-SERS) for direct detection of avian mycoplasmas. As a proof of concept for use in avian diagnostics, we used NA-SERS to detect and differentiate multiple strains of avian mycoplasma species, includingAcholeplasma laidlawii,Mycoplasma gallinarum,Mycoplasma gallinaceum,Mycoplasma synoviae, andM. gallisepticum, including vaccine strains 6/85, F, and ts-11. Chemometric multivariate analysis of spectral data was used to classify these species rapidly and accurately, with >93% sensitivity and specificity. Furthermore, NA-SERS had a lower limit of detection that was 100-fold greater than that of standard PCR and comparable to that of real-time quantitative PCR. Detection ofM. gallisepticumin choanal cleft swabs from experimentally infected birds yielded good sensitivity and specificity, suggesting that NA-SERS is applicable for clinical detection.


Sign in / Sign up

Export Citation Format

Share Document