scholarly journals Liquid Chromatography-Tandem Mass Spectrometry of Desoxo-Narchinol a and Its Pharmacokinetics and Oral Bioavailability in Rats and Mice

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2037 ◽  
Author(s):  
Subindra Kazi Thapa ◽  
Mahesh Upadhyay ◽  
Tae Hwan Kim ◽  
Soyoung Shin ◽  
Sung-Joo Park ◽  
...  

Desoxo-narchinol A is one of the major active constituents from Nardostachys jatamansi, which has been reported to possess various pharmacological activities, including anti-inflammatory, antioxidant, and anticonvulsant activity. A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of desoxo-narchinol A in two different biological matrices, i.e., rat plasma and mouse plasma, using sildenafil as an internal standard (IS). The method involved simple protein precipitation with acetonitrile and the analyte was separated by gradient elution using 100% acetonitrile and 0.1% formic acid in water as a mobile phase. The MS detection was performed with a turbo electrospray in positive ion mode. The lower limit of quantification was 10 ng/mL in both rat and mouse plasma. Intra- and inter-day accuracies were in the ranges of 97.23–104.54% in the rat plasma and 95.90–110.11% in the mouse plasma. The precisions were within 8.65% and 6.46% in the rat and mouse plasma, respectively. The method was applied to examine the pharmacokinetics of desoxo-narchinol A, and the oral bioavailability of desoxo-narchinol A was 18.1% in rats and 28.4% in mice. The present results may be useful for further preclinical and clinical studies of desoxo-narchinol A.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yan Du ◽  
Hongliang Su ◽  
Jie Cao ◽  
Zhiwen Wei ◽  
Yujin Wang ◽  
...  

Male Sprague-Dawley rats (n=18) were randomly divided into three groups: a saline group (20 mL/kg by gavage), a ketamine (KET) group (100 mg/kg by gavage), and a KET (the same routes and doses) combined with levo-tetrahydropalmatine (l-THP; 40 mg/kg by gavage) group (n=6). Blood samples were acquired at different time points after drug administration. A simple and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to determine the concentrations of KET and its metabolite, norketamine (NK), in rat plasma. Chromatographic separation was achieved using a BEH C18 column (2.1 mm×50 mm, 1.7 μm) with chlorpheniramine maleate (Chlor-Trimeton) as an internal standard (IS). The initial mobile phase consisted of acetonitrile–water with 0.1% methanoic acid (80 : 20, v/v). The multiple reaction monitoring (MRM) modes of m/z 238.1→m/z 179.1 for KET, m/z 224.1→m/z 207.1 for NK, and m/z 275→m/z 230 for Chlor-Trimeton (IS) were utilized to conduct a quantitative analysis. Calibration curves of KET and NK in rat plasma demonstrated good linearity in the range of 2.5–500 ng/mL (r>0.9994), and the lower limit of quantification (LLOQ) was 2.5 ng/mL for both. Moreover, the intra- and interday precision relative standard deviation (RSD) of KET and NK were less than 4.31% and 6.53%, respectively. The accuracies (relative error) of KET and NK were below -1.41% and -6.07%, respectively. The extraction recoveries of KET and NK were more than 81.23±3.45% and 80.42±4.57%, respectively. This sensitive, rapid, and selective UPLC-MS/MS method was successfully applied to study the pharmacokinetic effects of l-THP on KET after gastric gavage. The results demonstrated that l-THP could increase the bioavailability of KET and promote the metabolism of KET. The results showed that l-THP has pharmacokinetics effects on KET in rat plasma.


Sign in / Sign up

Export Citation Format

Share Document