scholarly journals All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4561
Author(s):  
Wenxi Pei ◽  
Hao Li ◽  
Wei Huang ◽  
Meng Wang ◽  
Zefeng Wang

Fiber lasers that operate at 1.7 μm have important applications in many fields, such as biological imaging, medical treatment, etc. Fiber gas Raman lasers (FGRLs) based on gas stimulated Raman scattering (SRS) in hollow-core photonic crystal fibers (HC-PCFs) provide an elegant way to realize efficient 1.7 μm fiber laser output. Here, we report the first all-fiber structure tunable pulsed 1.7 μm FGRLs by fusion splicing a hydrogen-filled HC-PCF with solid-core fibers. Pumping with a homemade tunable pulsed 1.5 μm fiber amplifier, efficient 1693~1705 nm Stokes waves are obtained by hydrogen molecules via SRS. The maximum average output Stokes power is 1.63 W with an inside optical–optical conversion efficiency of 58%. This work improves the compactness and stability of 1.7 μm FGRLs, which is of great significance to their applications.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 711
Author(s):  
Wenxi Pei ◽  
Hao Li ◽  
Wei Huang ◽  
Meng Wang ◽  
Zefeng Wang

Here, we report the rotational stimulated Raman scattering (SRS) of hydrogen molecules in an all-fiber cavity based on hollow-core photonic crystal fibers (HC-PCFs). The gas cavity consists of a 49 m long HC-PCF filled with 18 bar high-pressure hydrogen and two sections of fusion spliced solid-core fibers on both ends. When pumped by a homemade 1064 nm pulsed fiber amplifier, only rotational SRS occurs in the gas cavity due to the transmission spectral characteristics of the used HC-PCF, and 1135 nm Stokes wave is obtained (Raman frequency shift of 587 cm−1). By changing the pulse width and repetition frequency of the pump source, the output characteristics are explored. In addition, a theoretical model is established for comparison with the experimental results. This work is helpful for the application of gas Raman laser based on the HC-PCFs.


Laser Physics ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 095101
Author(s):  
Nitish Paul ◽  
C P Singh ◽  
P K Gupta ◽  
P K Mukhopadhyay ◽  
K S Bindra

Author(s):  
Meng Wang ◽  
Le Liu ◽  
Zefeng Wang ◽  
Xiaoming Xi ◽  
Xiaojun Xu

The average power of diode-pumped fiber lasers has been developed deeply into the kW regime in the past years. However, stimulated Raman scattering (SRS) is still a major factor limiting the further power scaling. Here, we have demonstrated the mitigation of SRS in kilowatt-level diode-pumped fiber amplifiers using a chirped and tilted fiber Bragg grating (CTFBG) for the first time. The CTFBG is designed and inscribed in large-mode-area (LMA) fibers, matching with the operating wavelength of the fiber amplifier. With the CTFBG inserted between the seed laser and the amplifier stage, an SRS suppression ratio of ${\sim}10~\text{dB}$ is achieved in spectrum at the maximum output laser power of 2.35 kW, and there is no reduction in laser slope efficiency and degradation in beam quality. This work proves the feasibility and practicability of CTFBGs for SRS suppression in high-power fiber lasers, which is very useful for the further power scaling.


Sign in / Sign up

Export Citation Format

Share Document