gas cavity
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 25)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 130 (20) ◽  
pp. 204701
Author(s):  
Can Kang ◽  
Ning Mao ◽  
Kejin Ding ◽  
Changjiang Li

Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 506
Author(s):  
Liang Li ◽  
Haoyue Hao

An optical configuration was designed and simulated with a metal-photonic crystal (PhC) nanocavity, which had high sensitivity on gas detection. The simulated results shows that this configuration can generate a strong photonic localization through exciting Tamm plasmon polaritons. The strong photonic localization highly increases the sensitivity of gas detection. Furthermore, this configuration can be tuned to sense gases at different conditions through an adjustment of the detection light wavelength, the period number of photonic crystal and the thickness of the gas cavity. The sensing routes to pressure variations of air were revealed. The simulation results showed that the detection precision of the proposed device for gas pressure could reach 0.0004 atm.


2021 ◽  
Author(s):  
Valeriy Posmetev ◽  
Vadim Nikonov ◽  
Viktor Posmetev

The influence of the constructive perfection of suspensions on the efficiency of the functioning of a logging vehicle in the process of hauling timber along insufficiently equipped logging roads has been substantiated. The current direction of improving the suspension of timber trucks, which allows to reduce fuel consumption, the cost of maintenance and repair, and, consequently, reduce the final cost of exported timber, is considered. A perspective scheme of a pneumohydraulic suspension of a modular type, applied to a timber truck, is proposed. On the basis of computer modeling, a preliminary assessment of the effectiveness of the functioning of the proposed pneumohydraulic suspension installed on a logging vehicle during its movement in the process of hauling timber along an insufficiently equipped logging road has been carried out. The main factors that have a significant impact on the operation of a pneumohydraulic suspension of a modular type are described. The dependences of the change in the maximum values of the vertical acceleration of the timber truck, the pressure in the gas cavity of the pneumohydraulic cylinder, the temperature difference on the average height of irregularities, the number of obstacles per unit length of the timber road and the speed of the timber truck are obtained. The numerical values of the main factors influencing the functioning of the proposed suspension are revealed, which provide the best effect when a timber truck is moving along an insufficiently equipped timber road.


Author(s):  
Zhiwei Gao ◽  
Hongjian Cai ◽  
Yi Hong ◽  
Dechun Lu

Fine-grained marine sediments often contain gas bubbles that can cause many geotechnical problems. This soil has a composite structure with gas bubbles fitting within the saturated soil matrix. The gas cavity has a detrimental effect on the soil stiffness and strength when they are filled with undissolved gas only. The gas cavity can be filled with gas and pore water due to ‘bubble flooding’. Bubble flooding has a beneficial effect on the soil stiffness and undrained shear strength because it makes the saturated soil matrix partially drained under a globally undrained condition. A critical state constitutive model for gassy clay is presented which accounts for the composite structure of the soil and bubble flooding. The gas cavity is assumed to have a detrimental effect on the plastic hardening of the saturated soil matrix. Some of the bubbles can be flooded by pore water from the saturated soil matrix which leads to higher mean effective stress of the saturated soil matrix. Consequently, both soil stiffness and strength increase. Only one new parameter is introduced to model the detrimental effect of gas bubbles on plastic hardening. The model has been validated by the results of three gassy clays.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 371
Author(s):  
Jing Shi ◽  
Xinyu Ye ◽  
Yulong Cui ◽  
Wei Huang ◽  
Hao Li ◽  
...  

In recent years, fiber gas lasers have obtained a rapid development, however, efficient and stable pump coupling is a key limitation for their applications in the future. Here, we report an all-fiber gas cavity based on anti-resonant hollow-core fibers which have the beneficial properties of adjustable broad transmission bands and potential low transmission attenuation, especially in the mid-infrared. This kind of all-fiber gas cavity is fabricated by directly splicing with end caps at both ends for the first time. The high-power laser transmission characteristics were studied, and the experimental results show that the all-fiber gas cavities have a very stable performance. The maximum input laser power at 1080 nm is about 260 W, and the output power is 203 W, giving a total transmission efficiency of 78.1%. This work opens a new opportunity for the development of high-power all-fiber structured fiber gas lasers.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 711
Author(s):  
Wenxi Pei ◽  
Hao Li ◽  
Wei Huang ◽  
Meng Wang ◽  
Zefeng Wang

Here, we report the rotational stimulated Raman scattering (SRS) of hydrogen molecules in an all-fiber cavity based on hollow-core photonic crystal fibers (HC-PCFs). The gas cavity consists of a 49 m long HC-PCF filled with 18 bar high-pressure hydrogen and two sections of fusion spliced solid-core fibers on both ends. When pumped by a homemade 1064 nm pulsed fiber amplifier, only rotational SRS occurs in the gas cavity due to the transmission spectral characteristics of the used HC-PCF, and 1135 nm Stokes wave is obtained (Raman frequency shift of 587 cm−1). By changing the pulse width and repetition frequency of the pump source, the output characteristics are explored. In addition, a theoretical model is established for comparison with the experimental results. This work is helpful for the application of gas Raman laser based on the HC-PCFs.


2021 ◽  
Vol 57 (3) ◽  
pp. 102-116
Author(s):  
V. Kosenkov ◽  

The pressure field in discharge chambers of a limited volume with deformable walls very often has a great influence on the efficiency of technological processes of deformation of sheet alloys; therefore, its determination is an urgent task. As a result of an electric discharge in the liquid filling the discharge chamber, in it, a cavity with a higher compressibility is formed than the liquid in the chamber. At the stage of the discharge, this cavity is filled with non-ideal plasma, and after the discharge, with liquid vapor and gases dissolved in it (vapor-gas cavity). Its pulsations form a pressure field in the discharge chamber. The moving boundary of the vapor-gas cavity creates great problems in calculating the pressure field in a liquid, especially after a large number of its pulsations. At present, the role of the vapor-gas cavity in the formation of the pressure field in the discharge chamber with a deformable wall, which is a sheet alloy plate, is insufficiently studied. Its definition is the purpose of this work. The study was carried out on the base of a previously developed mathematical model of an electric discharge in water, which in this work is supplemented with relations that significantly increase the accuracy of calculating the resistance of the discharge channel and the energy released in it. It was determined that the pulsations of the vapor-gas cavity provide pressure fluctuations in it in an antiphase with the average pressure in the liquid. In a discharge chamber with rigid walls, they decay slowly, but the presence of a deformable wall leads to a rapid decay of pressure fluctuations. In the previously developed mathematical model, the change in the optical transparency of the plasma was taken into account, and its significant effect on the pressure in the cavity and the pressure field in the liquid was determined.


2021 ◽  
Vol 504 (1) ◽  
pp. 782-791
Author(s):  
H Garg ◽  
C Pinte ◽  
V Christiaens ◽  
D J Price ◽  
J S Lazendic ◽  
...  

ABSTRACT We present ALMA observations of the 12CO, 13CO, C18O J = 2-1 transitions and the 1.3 mm continuum emission for the circumbinary disc around HD 142527, at an angular resolution of ≈ 0${_{.}^{\prime\prime}}$3. We observe multiple spiral structures in intensity, velocity, and velocity dispersion for the 12CO and 13CO gas tracers. A newly detected 12CO spiral originates from the dust horseshoe, and is rotating at super-Keplerian velocity or vertically ascending, whilst the interspiral gas is rotating at sub-Keplerian velocities. This new spiral possibly connects to a previously identified spiral, thus spanning >360°. A spatial offset of  30 au is observed between the 12CO and 13CO spirals, to which we hypothesize that the gas layers are propagating at different speeds (surfing) due to a non-zero vertical temperature gradient. Leveraging the varying optical depths between the CO isotopologues, we reconstruct temperature and column density maps of the outer disc. Gas surface density peaks at r ≈ 180 au, coincident with the peak of continuum emission. Here, the dust grains have a Stokes number of ≈ 1, confirming radial and azimuthal trapping in the horseshoe. We measure a cavity radius at half-maximum surface density of ≈ 100 au, and a cavity eccentricity between 0.3 and 0.45.


Author(s):  
Clément Baruteau ◽  
Gaylor Wafflard-Fernandez ◽  
Romane Le Gal ◽  
Florian Debras ◽  
Andrés Carmona ◽  
...  

Abstract Predicting how a young planet shapes the gas and dust emission of its parent disc is key to constraining the presence of unseen planets in protoplanetary disc observations. We investigate the case of a 2 Jupiter mass planet that becomes eccentric after migrating into a low-density gas cavity in its parent disc. Two-dimensional hydrodynamical simulations are performed and post-processed by three-dimensional radiative transfer calculations. In our disc model, the planet eccentricity reaches ∼0.25, which induces strong asymmetries in the gas density inside the cavity. These asymmetries are enhanced by photodissociation and form large-scale asymmetries in 12CO J=3→2 integrated intensity maps. They are shown to be detectable for an angular resolution and a noise level similar to those achieved in ALMA observations. Furthermore, the planet eccentricity renders the gas inside the cavity eccentric, which manifests as a narrowing, stretching and twisting of iso-velocity contours in velocity maps of 12CO J=3→2. The planet eccentricity does not, however, give rise to detectable signatures in 13CO and C18O J=3→2 inside the cavity because of low column densities. Outside the cavity, the gas maintains near-circular orbits, and the vertically extended optically thick CO emission displays a four-lobed pattern in integrated intensity maps for disc inclinations $\gtrsim$ 30○. The lack of large and small dust inside the cavity in our model further implies that synthetic images of the continuum emission in the sub-millimetre, and of polarized scattered light in the near-infrared, do not show significant differences when the planet is eccentric or still circular inside the cavity.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 636
Author(s):  
Larissa Steigmann ◽  
Ole Jung ◽  
Wolfgang Kieferle ◽  
Sanja Stojanovic ◽  
Annica Proehl ◽  
...  

To date, there are no bioresorbable alternatives to non-resorbable and volume-stable membranes in the field of dentistry for guided bone or tissue regeneration (GBR/GTR). Even magnesium (Mg) has been shown to constitute a favorable biomaterial for the development of stabilizing structures. However, it has been described that it is necessary to prevent premature degradation to ensure both the functionality and the biocompatibility of such Mg implants. Different coating strategies have already been developed, but most of them did not provide the desired functionality. The present study analyses a new approach based on ion implantation (II) with PVD coating for the passivation of a newly developed Mg membrane for GBR/GTR procedures. To demonstrate comprehensive biocompatibility and successful passivation of the Mg membranes, untreated Mg (MG) and coated Mg (MG-Co) were investigated in vitro and in vivo. Thereby a collagen membrane with an already shown biocompatibility was used as control material. All investigations were performed according to EN ISO 10993 regulations. The in vitro results showed that both the untreated and PVD-coated membranes were not cytocompatible. However, both membrane types fulfilled the requirements for in vivo biocompatibility. Interestingly, the PVD coating did not have an influence on the gas cavity formation compared to the uncoated membrane, but it induced lower numbers of anti-inflammatory macrophages in comparison to the pure Mg membrane and the collagen membrane. In contrast, the pure Mg membrane provoked an immune response that was fully comparable to the collagen membrane. Altogether, this study shows that pure magnesium membranes represent a promising alternative compared to the nonresorbable volume-stable materials for GBR/GTR therapy.


Sign in / Sign up

Export Citation Format

Share Document