fiber lasers
Recently Published Documents


TOTAL DOCUMENTS

4070
(FIVE YEARS 206)

H-INDEX

91
(FIVE YEARS 1)

2022 ◽  
Vol 148 ◽  
pp. 107783
Author(s):  
Yixuan Zhu ◽  
Chao Zeng ◽  
Zhiwen He ◽  
Qun Gao ◽  
Huaqiang Wang ◽  
...  


2022 ◽  
Vol 149 ◽  
pp. 106826
Author(s):  
Wenchang Lai ◽  
Pengfei Ma ◽  
Wei Liu ◽  
Rongtao Su ◽  
Yanxing Ma ◽  
...  


Nano Research ◽  
2022 ◽  
Author(s):  
Nan Li ◽  
Heng Jia ◽  
Ming Guo ◽  
Wenying Zhang ◽  
Ji Wang ◽  
...  


2022 ◽  
Author(s):  
James Feehan ◽  
Samuel Yoffe ◽  
Enrico Brunetti ◽  
Manuel Ryser ◽  
Dino Jaroszynski


2022 ◽  
Author(s):  
Pascal Paradis ◽  
Tommy Boilard ◽  
Vincent Fortin ◽  
Stanislaw TRZESIEN ◽  
Michèle UDE ◽  
...  


Author(s):  
Shibin Jiang ◽  
Qing Wang ◽  
Lijia Jiang ◽  
Xiaonong Zhu
Keyword(s):  


MOMENTO ◽  
2022 ◽  
pp. I-X
Author(s):  
Ernesto P. Raposo ◽  
Anderson S. L. Gomes ◽  
Cid B. De Araujo

The 2021 Physics Nobel Prize was awarded to Syukuro Manabe, Klaus Hasselmann, and Giorgio Parisi for their “groundbreaking contributions to our understanding of complex physical systems.” Here we review some of the ideas and results which served as the scientific basis to the award. We also comment on the works by our research group on the complex systems properties of random lasers and random fiber lasers.  



2022 ◽  
Vol 20 (4) ◽  
pp. 56-62
Author(s):  
M. A. Ryabova ◽  
M. Yu. Ulupov ◽  
N. A. Shumilova ◽  
G. V. Portnov ◽  
E. K. Tikhomirova ◽  
...  

Aim of the study was to compare the cutting and coagulation properties of 1.56 and 1.94 μm fiber lasers with those of a 0.98 μm semiconductor laser.Materials and methods. A comparative study of the biological effects of 1.56 and 1.94 µm lasers and a 0.98 µm semiconductor laser used in a constant, continuous mode was carried out. The cutting properties of the lasers were evaluated on the chicken muscle tissue samples by the width and depth of the ablation zone formed via a linear laser incision at a speed of 2 mm/s, while the coagulation properties were assessed by the width of the lateral coagulation zone. The zones were measured using a surgical microscope and a calibration slide. For statistical analysis, power values of 3, 5, 7, 9, and 11 W were chosen for each laser wavelength.Results. Analysis of the findings confirmed that laser wavelength had a statistically significant effect on the linear dependence between incision parameters and laser power. It was found that the 1.56 μm fiber laser (water absorption) had a greater coagulation ability but a comparable cutting ability compared with the 0.98 μm laser (hemoglobin absorption). When used in the power mode of 7W or higher, the 1.94 µm laser provided superior cutting performance compared with the 0.98 µm semiconductor laser at the same exposure power. Elevating the power in any of the lasers primarily increased the width of the ablation zone, and to a lesser extent – the crater depth and the width of the lateral coagulation zone. Therefore, in comparison with the 0.98 μm semiconductor laser, higher radiation power in the 1.56 and 1.94 μm lasers mainly influences their cutting properties, expanding the width and depth of the ablation zone, and has a smaller effect on their coagulation ability.Conclusion. The findings of the study showed that the 1.56 and 1.94 μm fiber lasers have better coagulation properties in comparison with the 0.98 μm semiconductor laser. was statistically proven that all incision characteristics (width of the lateral coagulation zone, depth and width of the ablation zone) for the 1.56, 1.94, and 0.98 μm lasers depend on the power of laser radiation. The 1.94 µm laser is superior to the 0.98 µm laser in its cutting properties. 



2022 ◽  
pp. 163592
Author(s):  
Chi Zhang ◽  
Kexuan Han ◽  
Dechun Zhou ◽  
Chunlai Song ◽  
Pengfei Xu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document