stokes wave
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 27)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 33 (6) ◽  
pp. 345-356
Author(s):  
Min Su Park

In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.


2021 ◽  
Vol 11 (24) ◽  
pp. 11631
Author(s):  
Xiuwei Chai ◽  
Jingyuan Liu ◽  
Yu Zhou

This study is aimed at numerically investigating the cnoidal wave-induced dynamics characteristics and the liquefaction process in a loosely deposited seabed floor in a shallow water environment. To achieve this goal, the integrated model FSSI-CAS 2D is taken as the computational platform, and the advanced soil model Pastor–Zienkiewicz Mark III is utilized to describe the complicated mechanical behavior of loose seabed soil. The computational results show that a significant lateral spreading and vertical subsidence could be observed in the loosely deposited seabed floor due to the gradual loss of soil skeleton stiffness caused by the accumulation of pore pressure. The accumulation of pore pressure in the loose seabed is not infinite but limited by the liquefaction resistance line. The seabed soil at some locations could be reached to the full liquefaction state, becoming a type of heavy fluid with great viscosity. Residual liquefaction is a progressive process that is initiated at the upper part of the seabed floor and then enlarges downward. For waves with great height in shallow water, the depth of the liquefaction zone will be greatly overestimated if the Stokes wave theory is used. This study can enhance the understanding of the characteristics of the liquefaction process in a loosely deposited seabed under coastal shallow water and provide a reference for engineering activities.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2990
Author(s):  
Igor Shugan ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yang-Yih Chen

We present a study of the physical characteristics of traveling waves at shallow and intermediate water depths. The main subject of study is to the influence of nonlinearity on the dispersion properties of waves, their limiting heights and steepness, the shape of solitary waves, etc. A fully nonlinear Serre–Green–Naghdi-type model, a classical weakly nonlinear Boussinesq model and fifth-order Stokes wave solutions were chosen as models for comparison. The analysis showed significant, if not critical, differences in the effect of nonlinearity on the properties of traveling waves for these models. A comparison with experiments was carried out on the basis of the results of a joint Russian–Taiwanese experiment, which was carried out in 2015 at the Tainan Hydraulic Laboratory, and on available experimental data. A comparison with the experimental results confirms the applicability of a completely nonlinear model for calculating traveling waves over the entire range of applicability of the model in contrast to the Boussinesq model, which shows contradictory and unrealistic wave properties for moderate wavelengths.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 447
Author(s):  
Alexey G. Kuznetsov ◽  
Ilya N. Nemov ◽  
Alexey A. Wolf ◽  
Ekaterina A. Evmenova ◽  
Sergey I. Kablukov ◽  
...  

We review our recent experimental results on the cascaded Raman conversion of highly multimode laser diode (LD) pump radiation into the first- and higher-order Stokes radiation in multimode graded-index fibers. A linear cavity composed of fiber Bragg gratings (FBGs) inscribed in the fiber core is formed to provide feedback for the first Stokes order, whereas, for the second order, both a linear cavity consisting of two FBGs and a half-open cavity with one FBG and random distributed feedback (RDFB) via Rayleigh backscattering along the fiber are explored. LDs with different wavelengths (915 and 940 nm) are used for pumping enabling Raman lasing at different wavelengths of the first (950, 954 and 976 nm), second (976, 996 and 1019 nm) and third (1065 nm) Stokes orders. Output power and efficiency, spectral line shapes and widths, beam quality and shapes are compared for different configurations. It is shown that the RDFB cavity provides higher slope efficiency of the second Stokes generation (up to 70% as that for the first Stokes wave) with output power up to ~30 W, limited by the third Stokes generation. The best beam quality parameter of the second Stokes beam is close to the diffraction limit (M2~1.3) in both linear and half-open cavities, whereas the line is narrower (<0.2 nm) and more stable in the case of the linear cavity with two FBGs. However, an optimization of the FBG reflection spectrum used in the half-open cavity allows this linewidth value to be approached. The measured beam profiles show the dip formation in the output pump beam profile, whereas the first and second Stokes beams are Gaussian-shaped and almost unchanged with increasing power. A qualitative explanation of such behavior in connection with the power evolution for the transmitted pump and generated first, second and third Stokes beams is given. The potential for wavelength tuning of the cascaded Raman lasers based on LD-pumped multimode fibers is discussed.


PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xiaoyi Bao ◽  
Zichao Zhou ◽  
Yuan Wang

AbstractDistributed time-domain Brillouin scattering fiber sensors have been widely used to measure the changes of the temperature and strain. The linear dependence of the temperature and strain on the Brillouin frequency shift enabled the distributed temperature and strain sensing based on mapping of the Brillouin gain spectrum. In addition, an acoustic wave can be detected by the four wave mixing (FWM) associated SBS process, in which phase matching condition is satisfied via up-down conversion of SBS process through birefringence matching before and after the conversion process. Brillouin scattering can be considered as the scattering of a pump wave from a moving grating (acoustic phonon) which induces a Doppler frequency shift in the resulting Stokes wave. The frequency shift is dependent on many factors including the velocity of sound in the scattering medium as well as the index of refraction. Such a process can be used to monitor the gain of random fiber laser based on SBS, the distributed acoustic wave reflect the distributed SBS gain for random lasing radiation, as well as the relative intensity noise inside the laser gain medium. In this review paper, the distributed time-domain sensing system based on Brillouin scattering including Brillouin optical time-domain reflectometry (BOTDR), Brillouin optical time-domain analysis (BOTDA), and FWM enhanced SBS for acoustic wave detection are introduced for their working principles and recent progress. The distributed Brillouin sensors based on specialty fibers for simultaneous temperature and strain measurement are summarized. Applications for the Brillouin scattering time-domain sensors are briefly discussed.


2021 ◽  
Vol 9 (7) ◽  
pp. 748
Author(s):  
Aifeng Tao ◽  
Shuya Xie ◽  
Di Wu ◽  
Jun Fan ◽  
Yini Yang

The water particle velocity of the wave peaks is closely related to the wave load borne by offshore structures. It is of great value for marine disaster prevention to study the water particle velocity of nonlinear extreme waves represented by Freak waves. This study applies the High-order Spectral Method (HOS) numerical model to analyze the characteristics and influencing factors of the water particle velocity of Freak wave peak with two different generation mechanisms under the initial condition of a weakly modulated Stokes wave train. Our results show that the water particle velocity of the wave peak increases linearly with wave height and initial wave steepness in the evolution stage of modulation instability. While in the later stage, the relationship becomes exponential. Under the condition of similar wave heights, the deformation degrees of Freak waves with different generation mechanisms are distinct, the deformation degree of modulation instability stage is smaller than that of the later stage. The water particle velocity of the wave peaks increases with the deformation degrees. Furthermore, the correlation between wave peak height and water particle velocity is a quadratic function. This provides a theoretical basis for further understanding of nonlinear waves and the prediction of marine disasters.


2021 ◽  
Author(s):  
Wenjie Wang ◽  
Zhiliang Gao

Abstract For numerical simulation of structure-wave interaction, the wave generation with high accuracy is prime to analyze the wave loads and motions of the structure. Based on the fifth-order Stokes theory, a two-dimensional viscous wave flume, which was modeled using the commercial CFD solver ANSYS-FLUENT, was applied to the generation and propagation of regular waves in finite water depth. With the user-defined function provided by the solver, the momentum source term and boundary condition, which are used for the wave generation and dissipation, were developed to ensure the accuracy of wave simulation with large steepness. In addition, the wave flume was separated into two regions, which are governed by the laminar model and turbulent model, respectively. The separation of laminar and turbulent regions can alleviate the side effect of turbulence on the accuracy of wave generation. In order to validate the present method, the regular wave propagating with different steepness in finite water depth were simulated. The numerical results were in good agreement with the theoretical ones. The study showed that the present method was effective for the simulation of Stokes wave in finite water depth, especially effective to improve the numerical accuracy in case of large wave steepness.


2021 ◽  
Author(s):  
Huixing Gao ◽  
Jianjun Zhou ◽  
Yang Song ◽  
Qinghe Fang

Abstract In recent years, extreme waves have attracted more and more attention due to its threat to offshore and coastal structures. It is essential to obtain further insight into the formation and propagation of the extreme waves. The formation of extreme waves mainly comes from the simultaneous focusing of wave group energy in the ocean. In the present study, the nonlinear characteristics of the extreme wave are experimentally investigated by the wave focusing method. The phase decomposition methods, both two-phases separation and four-phases separation methods, are used to obtain the higher harmonic elevation in the focused wave. The results show that the four-phases separation method can reasonably extract the first four harmonics. With the separated results, the nonlinear analysis of the wave elevation and velocity of the focused wave is carried out. It is found that the harmonics of the wave group focused at the same time, but the wave elevation and energy of higher-order harmonics are smaller than that of the overall wave. The Stokes wave theory can describe the variation of second-order harmonics satisfactorily. However, the Stokes wave theory cannot estimate third-order harmonics accurately. More work should be carried out to figure out the third-order wave interaction occurring during wave focusing. With a distributed wave gauge system, the wave evolution along the wave flume is measured. The evanescent modes significantly influence the wave group’s harmonic structure near the wavemaker. The coefficients of the higher-order harmonics are obtained from the measured elevations. The nonlinear wave elevation of the focused wave can be reconstructed with those coefficients basing on the linear theoretical solution, which is in good agreement with the experimental results.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 711
Author(s):  
Wenxi Pei ◽  
Hao Li ◽  
Wei Huang ◽  
Meng Wang ◽  
Zefeng Wang

Here, we report the rotational stimulated Raman scattering (SRS) of hydrogen molecules in an all-fiber cavity based on hollow-core photonic crystal fibers (HC-PCFs). The gas cavity consists of a 49 m long HC-PCF filled with 18 bar high-pressure hydrogen and two sections of fusion spliced solid-core fibers on both ends. When pumped by a homemade 1064 nm pulsed fiber amplifier, only rotational SRS occurs in the gas cavity due to the transmission spectral characteristics of the used HC-PCF, and 1135 nm Stokes wave is obtained (Raman frequency shift of 587 cm−1). By changing the pulse width and repetition frequency of the pump source, the output characteristics are explored. In addition, a theoretical model is established for comparison with the experimental results. This work is helpful for the application of gas Raman laser based on the HC-PCFs.


Sign in / Sign up

Export Citation Format

Share Document