scholarly journals Recent Advances on Pt-Free Electro-Catalysts for Dye-Sensitized Solar Cells

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5186
Author(s):  
Yi-June Huang ◽  
Prasanta Kumar Sahoo ◽  
Dung-Sheng Tsai ◽  
Chuan-Pei Lee

Since Prof. Grätzel and co-workers achieved breakthrough progress on dye-sensitized solar cells (DSSCs) in 1991, DSSCs have been extensively investigated and wildly developed as a potential renewable power source in the last two decades due to their low cost, low energy-intensive processing, and high roll-to-roll compatibility. During this period, the highest efficiency recorded for DSSC under ideal solar light (AM 1.5G, 100 mW cm−2) has increased from ~7% to ~14.3%. For the practical use of solar cells, the performance of photovoltaic devices in several conditions with weak light irradiation (e.g., indoor) or various light incident angles are also an important item. Accordingly, DSSCs exhibit high competitiveness in solar cell markets because their performances are less affected by the light intensity and are less sensitive to the light incident angle. However, the most used catalyst in the counter electrode (CE) of a typical DSSC is platinum (Pt), which is an expensive noble metal and is rare on earth. To further reduce the cost of the fabrication of DSSCs on the industrial scale, it is better to develop Pt-free electro-catalysts for the CEs of DSSCs, such as transition metallic compounds, conducting polymers, carbonaceous materials, and their composites. In this article, we will provide a short review on the Pt-free electro-catalyst CEs of DSSCs with superior cell compared to Pt CEs; additionally, those selected reports were published within the past 5 years.

2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14433-14440 ◽  
Author(s):  
Sheng-qi Guo ◽  
Tian-zeng Jing ◽  
Xiao Zhang ◽  
Xiao-bing Yang ◽  
Zhi-hao Yuan ◽  
...  

In this work, we report the synthesis of mesoporous Bi2S3 nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I–V curves and tested conversion efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Saeid Vafaei ◽  
Kazuhiro Manseki ◽  
Soki Horita ◽  
Masaki Matsui ◽  
Takashi Sugiura

We present for the first time a synthetic method of obtaining 1D TiO2 nanorods with sintering methods using bundle-shaped 3D rutile TiO2 particles (3D BR-TiO2) with the dimensions of around 100 nm. The purpose of this research is (i) to control crystallization of the mixture of two kinds of TiO2 semiconductor nanocrystals, that is, 3D BR-TiO2 and spherical anatase TiO2 (SA-TiO2) on FTO substrate via sintering process and (ii) to establish a new method to create photoanodes in dye-sensitized solar cells (DSSCs). In addition, we focus on the preparation of low-cost and environmentally friendly titania electrode by adopting the “water-based” nanofluids. Our results provide useful guidance on how to improve the photovoltaic performance by reshaping the numerous 3D TiO2 particles to 1D TiO2-based electrodes with sintering technique.


RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 33433-33442 ◽  
Author(s):  
Samim Sardar ◽  
Srabanti Ghosh ◽  
Hynd Remita ◽  
Prasenjit Kar ◽  
Bo Liu ◽  
...  

Enhanced photovoltage in the presence of silver modified TiO2 nanocomposites as a photoanode in dye-sensitized solar cells.


Sign in / Sign up

Export Citation Format

Share Document