scholarly journals Reentrant Behavior of the Density vs. Temperature of Indium Islands on GaAs(111)A

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1512
Author(s):  
Artur Tuktamyshev ◽  
Alexey Fedorov ◽  
Sergio Bietti ◽  
Shiro Tsukamoto ◽  
Roberto Bergamaschini ◽  
...  

We show that the density of indium islands on GaAs(111)A substrates have a non-monotonic, reentrant behavior as a function of the indium deposition temperature. The expected increase in the density with decreasing temperature, indeed, is observed only down to 160 °C, where the indium islands undertake the expected liquid-to-solid phase transition. Further decreasing the temperature causes a sizable reduction of the island density. An additional reentrant increasing behavior is observed below 80 °C. We attribute the above complex behavior to the liquid–solid phase transition and to the complex island–island interaction which takes place between crystalline islands in the presence of strain. Indium solid islands grown at temperatures below 160 °C have a face-centered cubic crystal structure.

2010 ◽  
Vol 63 (4) ◽  
pp. 544 ◽  
Author(s):  
Anja-Verena Mudring

Ionic liquids (ILs) have become an important class of solvents and soft materials over the past decades. Despite being salts built by discrete cations and anions, many of them are liquid at room temperature and below. They have been used in a wide variety of applications such as electrochemistry, separation science, chemical synthesis and catalysis, for breaking azeotropes, as thermal fluids, lubricants and additives, for gas storage, for cellulose processing, and photovoltaics. It has been realized that the true advantage of ILs is their modular character. Each specific cation–anion combination is characterized by a unique, characteristic set of chemical and physical properties. Although ILs have been known for roughly a century, they are still a novel class of compounds to exploit due to the vast number of possible ion combinations and one fundamental question remains still inadequately answered: why do certain salts like ILs have such a low melting point and do not crystallize readily? This Review aims to give an insight into the liquid–solid phase transition of ILs from the viewpoint of a solid-state chemist and hopes to contribute to a better understanding of this intriguing class of compounds. It will introduce the fundamental theories of liquid–solid-phase transition and crystallization from melt and solution. Aside form the formation of ideal crystals the development of solid phases with disorder and of lower order like plastic crystals and liquid crystals by ionic liquid compounds are addressed. The formation of ionic liquid glasses is discussed and finally practical techniques, strategies and methods for crystallization of ionic liquids are given.


RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 859-865 ◽  
Author(s):  
Changping Guo ◽  
Dunju Wang ◽  
Bing Gao ◽  
Jun Wang ◽  
Bo Luo ◽  
...  

The comparison of solid–solid phase transition (ε → γ polymorph) of CL-20 and Cl-20/composites revealed by DSC curves.


Cell ◽  
2015 ◽  
Vol 162 (5) ◽  
pp. 1066-1077 ◽  
Author(s):  
Avinash Patel ◽  
Hyun O. Lee ◽  
Louise Jawerth ◽  
Shovamayee Maharana ◽  
Marcus Jahnel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document