scholarly journals Fabricating Femtosecond Laser-Induced Periodic Surface Structures with Electrophysical Anisotropy on Amorphous Silicon

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Dmitrii Shuleiko ◽  
Mikhail Martyshov ◽  
Dmitrii Amasev ◽  
Denis Presnov ◽  
Stanislav Zabotnov ◽  
...  

One-dimensional periodic surface structures were formed by femtosecond laser irradiation of amorphous hydrogenated silicon (a-Si:H) films. The a-Si:H laser processing conditions influence on the periodic relief formation as well as correlation of irradiated surfaces structural properties with their electrophysical properties were investigated. The surface structures with the period of 0.88 and 1.12 μm were fabricated at the laser wavelength of 1.25 μm and laser pulse number of 30 and 750, respectively. The orientation of the surface structure is defined by the laser polarization and depends on the concentration of nonequilibrium carriers excited by the femtosecond laser pulses in the near-surface region of the film, which affects a mode of the excited surface electromagnetic wave which is responsible for the periodic relief formation. Femtosecond laser irradiation increases the a-Si:H films conductivity by 3 to 4 orders of magnitude, up to 1.2 × 10−5 S∙cm, due to formation of Si nanocrystalline phase with the volume fraction from 17 to 28%. Dark conductivity and photoconductivity anisotropy, observed in the irradiated a-Si:H films is explained by a depolarizing effect inside periodic microscale relief, nonuniform crystalline Si phase distribution, as well as different carrier mobility and lifetime in plane of the studied samples along and perpendicular to the laser-induced periodic surface structures orientation, that was confirmed by the measured photoconductivity and absorption coefficient spectra.

MRS Advances ◽  
2016 ◽  
Vol 1 (49) ◽  
pp. 3317-3327 ◽  
Author(s):  
V. Saikiran ◽  
Mudasir H Dar ◽  
R. Kuladeep ◽  
Narayana Rao Desai

ABSTRACTIn this manuscript a simple approach is discussed to fabricate uniform periodic surface structures on semiconductor surfaces by femtosecond laser irradiation for surface-enhanced Raman spectroscopy (SERS) applications. Gold films having different thickness are first deposited on semiconductor silicon (Si) surfaces and then periodic surface structures are fabricated by femtosecond laser irradiation. The periodic structures are observed to be uniform over a large area with chain type structure formation of gold and Si. We have studied the formation of these surface structures on Si surface by having different thickness gold films deposited on Si substrates. This approach of the fabrication of surface structures with the assistance of gold film is found to help in local field enhancement and hence work as suitable substrate for the SERS experiments. The conditions for achieving high enhancement factor in SERS with different gold film thicknesses are explored in detail. We also present here the formation of low frequency ripples on Silicon (Si) and high frequency as well as low frequency ripples on titanium (Ti) surface in air and water environments by irradiation with fs laser pulses. Different morphologies were observed on Ti surface depending upon the laser irradiation parameters and the surrounding dielectric medium.


2014 ◽  
Vol 115 (17) ◽  
pp. 173101 ◽  
Author(s):  
A. Pan ◽  
A. Dias ◽  
M. Gomez-Aranzadi ◽  
S. M. Olaizola ◽  
A. Rodriguez

2020 ◽  
Vol 312 ◽  
pp. 192-199
Author(s):  
Dmitrii V. Shuleiko ◽  
Mikhail N. Martyshov ◽  
Danila V. Orlov ◽  
Denis E. Presnov ◽  
Stanislav V. Zabotnov ◽  
...  

Anisotropic periodic relief in form of ripples was formed on surface of amorphous hydrogenated silicon (a-Si:H) films by femtosecond laser pulses with the wavelength of 1.25 μm. The orientation of the surface structures relative to laser radiation polarization vector depended on the number of laser pulses N acting on the film surface. When N = 30, the structures with 0.88 μm period were formed orthogonal to the laser radiation polarization; at N = 750 the surface structures had period of 1.12 μm and direction parallel to the polarization. The conductivity of the laser-modified a-Si:H films increased by 3 to 4 orders of magnitude, up to 3.8·10–5 (Ω∙cm)–1, due to formation of nanocrystalline Si phase with a volume fraction from 17 to 30%. Anisotropy of the dark conductivity, as well as anisotropy of the photoconductivity spectral dependences was observed in the modified films due to depolarizing influence of periodic microscale relief and uneven distribution of nanocrystalline Si phase within such laser-induced structure.


Author(s):  
А.В. Колчин ◽  
Д.В. Шулейко ◽  
А.В. Павликов ◽  
С.В. Заботнов ◽  
Л.А. Головань ◽  
...  

Femtosecond laser annealing of thin-film multilayered structures based on amorphous silicon and germanium were studied. The original samples were synthesized via plasma-enhanced deposition on glass substrate. Scanning electron microscopy revealed formation of periodic surface structures in the irradiated films. Raman spectra analysis revealed crystallization of amorphous germanium as a result of femtosecond laser pulses action, as well as fluence-dependent mixture of the germanium and silicon layers at absence of crystallization of the amorphous silicon layers.


Sign in / Sign up

Export Citation Format

Share Document