pulse number
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 54)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Lin Dan ◽  
Hao Xu ◽  
Ping Guo ◽  
Jianye Zhao

Abstract Based on the proposed theoretical model of a three-level system, the optical Bloch equations including the direct two-photon transition (DTPT) process using the optical frequency comb (OFC) were derived and the population distribution of particles in the upper states varying with the velocity of the atoms was obtained. Comparing to the resonance two-photon transition process, that population was increased by a factor of 1.4 without the Doppler shift, which is consistent with our previous experimental results. Simultaneously, the relationship between momentum transfers, and atomic velocity and pulse number were analyzed. When applied to a multi-level system it was found the population of particles in the excited states increased by a few percentages. The novel approach of DTPT using OFC improved the utilization of comb teeth and atoms, increased the momentum transfer path, reduced the reachable Doppler temperature limit, and encouraged us to use OFC to cool multiple elements simultaneously through the DTPT process. By analyzing the Doppler temperature of 133Cs and 87Rb in one dimension, it was found that this process can lower a temperature below 100 mK and generate dipolar molecules 133Cs87Rb via photoassociation, which provides us a new tool to create dipolar molecules and to investigate their complex rovibrational spectra in ultra-cold chemistry.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Oleg A. Streletskiy ◽  
Ilya A. Zavidovskiy ◽  
Vladimir V. Sychev ◽  
Alexander A. Dudin ◽  
Sergey A. Savinov ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 313
Author(s):  
Cyrill Slezak ◽  
Roland Rose ◽  
Julia M. Jilge ◽  
Robert Nuster ◽  
David Hercher ◽  
...  

In vitro investigations, which comprise the bulk of research efforts geared at identifying an underlying biomechanical mechanism for extracorporeal shock wave therapy (ESWT), are commonly hampered by inadequate descriptions of the underlying therapeutic acoustical pressure waves. We demonstrate the necessity of in-situ sound pressure measurements inside the treated samples considering the significant differences associated with available applicator technologies and cell containment. A statistical analysis of pulse-to-pulse variability in an electrohydraulic applicator yields a recommendation for a minimal pulse number of n = 300 for cell pallets and suspensions to achieve reproducible treatments. Non-linear absorption behavior of sample holders and boundary effects are shown for transient peak pressures and applied energies and may serve as a guide when in-situ measurements are not available or can be used as a controllable experimental design factor. For the use in microbiological investigations of ESWT we provide actionable identification of common problems in describing physical shockwave parameters and improving experimental setups by; (1) promoting in-situ sound field measurements, (2) statistical evaluation of applicator variability, and (3) extrapolation of treatment parameters based on focal and treatment volumes.


2021 ◽  
Vol 11 (6) ◽  
pp. 7957-7963
Author(s):  
A. F. Ozalp ◽  
R. Polat ◽  
C. Cetinkaya ◽  
M. H. Cetin

This paper describes a new type of digital hydraulic valve run by two servo motors. Digital hydraulics is a cutting-edge technology, which saves more exhausted energy than conventional hydraulic valves. It includes conventional valves, but its working principle is different. Similar or different size valves constitute a digital hydraulic valve assembly. When the assigned valves are opened, a certain amount of flow is obtained from the output of the valve assembly. To control a digital hydraulic valve, Pulse Number Modulation (PNM) Control technique is used for equal valve flow rates, while Pulse Code Modulation (PCM) is used for different valve flow rates. Valves are exerted by independently launched electric coils. Previous studies used controller board and external power booster circuits for coils. In this study, a new type of digital hydraulic valve is designed, manufactured, and tested with the PNM method. The studied valve body has two different valve groups. Every group includes 16 equal valves and 1 camshaft rotated by 1 servo motor. The servo motors are controlled by a PLC. The calculated performance index is found to be 5.1ms which is similar to the results of previous studies. The experimental results showed that the cam and servo motor controlled digital hydraulics is applicable to variable speed control hydraulic systems.


Author(s):  
Saumya Gupta ◽  
Rishi K. Alluri ◽  
Gary J. Rose ◽  
Mark A. Bee

Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus (IC) consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1908
Author(s):  
Chelsea Edelblute ◽  
Cathryn Mangiamele ◽  
Richard Heller

Gene-based approaches for protein replacement therapies have the potential to reduce the number of administrations. Our previous work demonstrated that expression could be enhanced and/or the applied voltage reduced by preheating the tissue prior to pulse administration. In the current study, we utilized our 16-pin multi-electrode array (MEA) and incorporated nine optical fibers, connected to an infrared laser, between each set of four electrodes to heat the tissue to 43 °C. For proof of principle, a guinea pig model was used to test delivery of reporter genes. We observed that when the skin was preheated, it was possible to achieve the same expression levels as gene electrotransfer without preheating, but with a 23% reduction of applied voltage or a 50% reduction of pulse number. With respect to expression distribution, preheating allowed for delivery to the deep dermis and muscle. This suggested that this cutaneous delivery approach has the potential to achieve expression in the systemic circulation, thus this protocol was repeated using a plasmid encoding Human Factor IX. Elevated Factor IX serum protein levels were detected by ELISA up to 100 days post gene delivery. Further work will involve optimizing protein levels and scalability in an effort to reduce application frequency.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1382
Author(s):  
Myeongjun Kim ◽  
Philgong Choi ◽  
Jae Heung Jo ◽  
Kyunghan Kim

Eliminating dust is gaining importance as a critical requirement in the display panel manufacturing process. The pixel resolution of display panels is increasing rapidly, which means that even small dust particles on the order of a few micrometers can affect them. Conventional surface cleaning methods such as ultrasonic cleaning (USC), CO2 cleaning, and wet cleaning may not be sufficiently efficient, economical, or environment friendly. In this study, a laser shockwave cleaning (LSC) method with a 233 fs pulsed laser was developed, which is different from the laser ablation cleaning method. To minimize thermal damage to the glass substrate, the effect of the number of pulses and the gap distance between the focused laser beam and the glass substrate were studied. The optimum number of pulses and gap distance to prevent damage to the glass substrate was inferred as 500 and 20 μm, respectively. With the optimal pulse number and gap distance, cleaning efficiency was tested at a 95% removal ratio regardless of the density of the particles. The effective cleaning area was measured using the removal ratio map and compared with the theoretical value.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2663
Author(s):  
Tao Cheng ◽  
Wenjing Qin ◽  
Youyun Lian ◽  
Xiang Liu ◽  
Jun Tang ◽  
...  

Developing high-performance tungsten plasma-facing materials for fusion reactors is an urgent task. In this paper, novel nanochannel structural W films prepared by magnetron sputtering deposition were irradiated using a high-power pulsed electron beam or ion beam to study their edge-localized modes, such as transient thermal shock resistance. Under electron beam irradiation, a 1 μm thick nanochannel W film with 150 watt power showed a higher absorbed power density related cracking threshold (0.28–0.43 GW/m2) than the commercial bulk W (0.16–0.28 GW/m2) at room temperature. With ion beam irradiation with an energy density of 1 J/cm2 for different pulses, the bulk W displayed many large cracks with the increase of pulse number, while only micro-crack networks with a width of tens of nanometers were found in the nanochannel W film. For the mechanism of the high resistance of nanochannel W films to transient thermal shock, a residual stress analysis was made by Grazing-incidence X-ray diffraction (GIXRD), and the results showed that the irradiated nanochannel W films had a much lower stress than that of the irradiated bulk W, which indicates that the nanochannel structure can release more stress, due to its special nanochannel structure and ability for the annihilation of irradiation induced defects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257345
Author(s):  
Wei Wang ◽  
Xiaorong Xue ◽  
Weisheng Chen ◽  
Xiaoyan Xue

Infrasonic signals measured before an earthquake carry information about the size and development speed of the source fracture, the stress at the fracture site and the elastic properties of the geologic medium. The infrasonic signal has a stable time scale, and compared with other precursors, infrasound has a unique sensitivity to earthquake disasters. However, to date, there has been no relevant theoretical research on the mechanism of infrasonic anomalies, and information on the development of fracture sources cannot be obtained from these characteristics, which makes the application of this anomaly in earthquake prediction challenging. In this study, we obtained the characteristics of short-term and impending infrasonic anomalies based on the infrasound data of more than 100 strong earthquakes. With a range of elastic medium models with a large number of fractures, we completed the theoretical simulation of the formation process of infrasonic precursors during the formation of the main fractures, analyzed the physical evolution of acoustic signals when cracks are generated, and quantitatively described the stages of large fracture formation caused by the initiation and propagation of seismic cracks. Specifically, this study revealed the causes of various and complex forms of infrasonic precursors near the critical point and the causes of the time- and space-dependent characteristics of these precursors, such as a noticeable attenuation of the pulse number, a low frequency and a large amplitude, which verified the effectiveness of infrasonic anomalies as strong earthquake precursors.


2021 ◽  
Vol 2049 (1) ◽  
pp. 012020
Author(s):  
Evelyn ◽  
Chairul ◽  
Komalasari ◽  
E Pebrianti ◽  
W Vazirani

Abstract Heat resistant molds are principle spoilage agents in foods and beverages with low acidity. The main objective of this work was to investigate the effect of 65 kV/cm PEF on the log reductions of Eupenicillium javanicum ascospores in 10–30°Brix pineapple juice as well as the modelling. Then, the first-order and Weibull parameters of the 65 kV/cm PEF inactivation of E. javanicum ascospores was estimated and compared. Further, the effect of PEF in combination with ultraviolet (UV) light treatment on the log reductions of E. javanicum ascospores was studied. Decreasing the soluble solid content of the juice from 30 to 10°Brix for 11.3 pulses increased the spore inactivation in pineapple juice by 2.7 log. A pulse number of 16 would be required by the 65 kV/cm PEF to achieve a 5-log reduction in juice. The Weibull model described spore inactivation by pulsed electric field. The estimated b-values for the 65 kV/cm PEF were 0.673 at 10°Brix, 0.041 at 20°Brix and 0.010 at 30°Brix, with n-values between 0.73 and 2.08. Although the combination of the PEF and UV light resulted in a slightly greater microbial inactivation, however two hurdles were not suggested. The results of this study confirmed the advantage of PEF technology for the inactivation of E. javanicum ascospores in pineapple juice.


Sign in / Sign up

Export Citation Format

Share Document