scholarly journals Modified Camellia oleifera Shell Carbon with Enhanced Performance for the Adsorption of Cooking Fumes

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1349
Author(s):  
Dongliang Liao ◽  
Wen Shi ◽  
Jing Gao ◽  
Bin Deng ◽  
Ruijin Yu

Using Camellia oleifera shell (COS) as a raw material and phosphoric acid as the activator, activated Camellia oleifera shell carbon (COSC-0) was prepared and then modified by Fenton’s reagent (named as COSC-1). SEM, GC-MS, FTIR, and specific surface area and pore analyzers were used to study the adsorption performance of COS, COSC-0, and COSC-1 on cooking fumes. Results showed that COSC-1 was the best adsorbent compared with COS and COSC-0. The adsorption quantity and penetrating time of COSC-1 were 44.04 mg/g and 4.1 h, respectively. Most aldehydes could be adsorbed by COSC-1, which was due to the large number of carbonyl and carboxyl groups generated on the surface of COSC-1 from the action of Fenton’s reagent. The adsorption effect of COSC-1 on different types of pollutants in cooking fumes was analyzed based on the similar compatibility principle. COSC-1 showed a much higher adsorption effect on the strong polarity functional groups than on weak polar groups. The results provide a theoretical basis for the application of Camellia oleifera shell carbon adsorption technology in the treatment of cooking fumes.

2021 ◽  
Author(s):  
Huan Zhang ◽  
Peng Zeng ◽  
Hongquan Liu ◽  
Lei Liao ◽  
Shengpeng Mo ◽  
...  

Abstract In this study, natural loofah was used as a raw material to adsorb cooking fume pollutants after grinding into a powder (TGS), activation by phosphoric acid to generate activated loofah carbon (TGSC-0), and further modification by Fenton’s reagent (TGSC-1). SEM, GC-MS, FT-IR, and X-ray diffraction analyses, in addition to surface area and pore measurements, were used to characterize the adsorption performance of TGS, TGSC-0, and TGSC-1 toward cooking fume pollutants including oils, particulate matter, and non-methane hydrocarbon). TGSC-1 was the best adsorbent when compared against TGS and TGSC-0, and exhibited saturated adsorption capacities for oil, non-methane hydrocarbon (NMHC), PM2.5, and PM10 of 10.367 mg/g, 4.132 mg/g, 5.613 μg/g, and 16.486 μg/g, respectively. Microscopy indicated that the TGSC-1 surface was rougher than that of TGSC-0. In addition, the adsorption properties of TGSC-1 were enhanced due to abundant hydroxyl, carbonyl, and carboxyl groups on the material surfaces, while iron was also present in the amorphous form that was generated on TGSC-1 surfaces from Fenton’s reagent. As TGSC-1 mass increased, the adsorption breakthrough time and adsorption capacity for simulated cooking fumes (SCFs) gradually increased. Further, Langmuir models better fit the adsorption process based on the highest R2 values being observed for Langmuir model fitting curves of TGSC-1 adsorption of pollutants (i.e., oils, NMHC, PM2.5, and PM10) from SCF, suggesting that adsorption was primarily due to monolayer adsorption and that chemical adsorption plays a major role in this process. This study provides a theoretical basis for the application of TGSC adsorption technology in the treatment of cooking fumes.


2000 ◽  
Vol 9 (4) ◽  
pp. 331-345 ◽  
Author(s):  
Katherine R. Weeks ◽  
Clifford J. Bruell ◽  
Nihar R. Mohanty

Tetrahedron ◽  
1963 ◽  
Vol 19 (11) ◽  
pp. 1705-1710 ◽  
Author(s):  
G.J. Moody

1982 ◽  
Vol 104 (13) ◽  
pp. 3783-3783
Author(s):  
Cheves Walling ◽  
Kalyani Amarnath ◽  
Curt Campbell

2021 ◽  
Vol 25 (7) ◽  
pp. 8-12
Author(s):  
P. Rajendran ◽  
K. Geethu ◽  
P. Bashpa ◽  
K. Bijudas

Congo red is a toxic azo dye which is used extensively in industries like textile, paper, pulp and paper. Very high amount of Congo red from these industrial sources is discharged into natural water bodies resulting environmental pollution. The present work reports the kinetics and mechanism of oxidative decomposition of Congo red by Fenton’s reagent in homogeneous medium and also under ultra violet light irradiation. Kinetic parameters like effect of [Fe2+], [H2O2], [Congo red] and temperature on the decomposition of Congo red were studied. The reaction is found to be fractional order with [Fe2+] and first order with [H2O2] and [Congo red]. The rate of oxidative decomposition of Congo red by Fenton’ reagent showed a rapid increase of three times when irradiated with ultra violet radiation and completion of reaction occurred within 5-6 minute. Various thermodynamic variables were determined and the presence of isosbestic points on sequential scanning of oxidation kinetics proves that the reaction is very smooth, spontaneous and endothermic. A suitable mechanism is suggested based on the experimental results obtained.


1997 ◽  
Vol 36 (12) ◽  
pp. 215-222 ◽  
Author(s):  
Shyh-Fang Kang ◽  
Huey-Min Chang

This study was designed to use both artificial and real textile secondary effluents to evaluate (1) the COD and color removal efficiencies for ferrous coagulation and Fenton's coagulation, and (2) the feasibility of using hydrogen peroxide to improve ferrous coagulation to meet more stringent effluent standards. The results indicate that the optimum pHs for both ferrous coagulation and Fenton's preoxidation processes range between 8.0–10 and 3.0–5.0, respectively. The rate for color removal is faster than that for COD removal in the Fenton's preoxidation process. The removals of COD and color are mainly accomplished during Fenton's preoxidation step. The ratio of COD removal for Fenton's coagulation versus ferrous coagulation, given the same ferrous dosage, ranges from 1.4 to 2.3, and it ranges from 1.1 to 1.9 for color removal, using two effluent samples. Therefore, using hydrogen peroxide can enhance the ferrous coagulation, and this ensures more stringent effluent standards of COD and color are met.


Sign in / Sign up

Export Citation Format

Share Document