lignin deposition
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 4)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Alexander B. Cain ◽  
Shu Yu ◽  
Li Tian

Methylated flavones, and tricin in particular, have been implicated in protecting wheat plants against a variety of biotic and abiotic stresses. Methylated flavones are produced via O-methylation of the hydroxyl groups in flavones, which is catalyzed by O-methyltransferases (OMTs). To examine the role of wheat OMT2 in methylated flavone biosynthesis and facilitate interrogation of tricin functions in wheat-environment interactions, loss-of-function mutants of OMT2 homoeologs, omt-A2 and omt-B2, were identified from a tetraploid wheat Targeting Induced Local Lesions in Genomes (TILLING) mutant population and crossed to generate the omt-A2omt-B2 double mutant. Although tricin and most other soluble phenolics did not differ in leaves and glumes of TILLING control and the omt-A2, omt-B2, and omt-A2 omt-B2 mutants, chlorogenic acid was increased in glumes of omt-A2 omt-B2 relative to TILLING control, suggesting that it might serve as a substrate for OMT2. The omt2 mutant lines showed similar growth phenotypes as well as comparable lignin deposition in cell walls of stems compared to TILLING control. These results collectively suggest that OMT2 and its close homolog OMT1 may possess overlapping activities in tricin production, with OMT1 compensating for the missing OMT2 activities in the omt2 mutant lines.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qiong Zhang ◽  
Lihu Wang ◽  
Zhongtang Wang ◽  
Rentang Zhang ◽  
Ping Liu ◽  
...  

AbstractFruit lignification is due to lignin deposition in the cell wall during cell development. However, there are few studies on the regulation of cell wall lignification and lignin biosynthesis during fruit pigmentation. In this study, we investigated the regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube. The cellulose content decreased, while the lignin content increased in the winter jujube pericarp during pigmentation. Safranin O-fast green staining showed that the cellulose content was higher in the cell wall of winter jujube prior to pigmentation, whereas the lignin in the cell wall increased after pigmentation. The thickness of the epidermal cells decreased with pericarp pigmentation. A combined metabolomics and transcriptomics analysis showed that guaiacyl-syringyl (G-S) lignin was the main lignin type in the pericarp of winter jujube, and F5H (LOC107424406) and CCR (LOC107420974) were preliminarily identified as the key genes modulating lignin biosynthesis in winter jujube. Seventeen MYB and six NAC transcription factors (TFs) with potential regulation of lignin biosynthesis were screened out based on phylogenetic analysis. Three MYB and two NAC TFs were selected as candidate genes and further studied in detail. Arabidopsis ectopic expression and winter jujube pericarp injection of the candidate genes indicated that the MYB activator (LOC107425254) and the MYB repressor (LOC107415078) control lignin biosynthesis by regulating CCR and F5H, while the NAC (LOC107435239) TF promotes F5H expression and positively regulates lignin biosynthesis. These findings revealed the lignin biosynthetic pathway and associated genes during pigmentation of winter jujube pericarp and provide a basis for further research on lignin regulation.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Yuka Furusawa ◽  
Tatsuya Ashitani

AbstractSnow damage is problematic when cultivating bamboo shoots, and “Uradome”, the practice of removing the tips of new shoots, is used as a preventative measure. Producers perform “Uradome” at empirical times, but there is no scientific basis for this. We hypothesized that differences in the structure and composition of the cell wall might affect the optimal timing of "Uradome" and analyzed the cell wall components of the “Uradome” portion. The lower plant sections broken by the “Uradome” had larger cellulose and lignin depositions than the upper sections. However, there were no differences in the lignin structure or ratio between the upper and lower nodes of the broken sections. This suggests that differences in the degree of cellulose and lignin deposition have significant effects on “Uradome” sites, and that the timing coincides with the development of one or two juvenile branches, which growers empirically consider to be the appropriate time. These results are considered to be new findings that scientifically support the cultivation management of bamboo that has been conducted empirically.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiahui Xu ◽  
Xingyu Tao ◽  
Zhihua Xie ◽  
Xin Gong ◽  
Kaijie Qi ◽  
...  

AbstractPear [Pyrus bretschneideri cv. Dangshan Su] fruit quality is not always satisfactory owing to the presence of stone cells, and lignin is the main component of stone cells in pear fruits. Caffeoyl shikimate esterase (CSE) is a key enzyme in the lignin biosynthesis. Although CSE-like genes have been isolated from a variety of plant species, their orthologs are not characterized in pear. In this study, the CSE gene family (PbCSE) from P. bretschneideri was identified. According to the physiological data and quantitative RT-PCR (qRT-PCR), PbCSE1 was associated with lignin deposition and stone cell formation. The overexpression of PbCSE1 increased the lignin content in pear fruits. Relative to wild-type (WT) Arabidopsis, the overexpression of PbCSE1 delayed growth, increased the lignin deposition and lignin content in stems. Simultaneously, the expression of lignin biosynthetic genes were also increased in pear fruits and Arabidopsis. These results demonstrated that PbCSE1 plays an important role in cell lignification and will provide a potential molecular strategy to improve the quality of pear fruits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

AbstractLignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


Author(s):  
Claudia L. Cardenas ◽  
Michael A. Costa ◽  
Dhrubojyoti D. Laskar ◽  
Syed G. A. Moinuddin ◽  
Choonseok Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document