scholarly journals Oblique and Asymmetric Klein Tunneling across Smooth NP Junctions or NPN Junctions in 8-Pmmn Borophene

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1462
Author(s):  
Zhan Kong ◽  
Jian Li ◽  
Yi Zhang ◽  
Shu-Hui Zhang ◽  
Jia-Ji Zhu

The tunneling of electrons and holes in quantum structures plays a crucial role in studying the transport properties of materials and the related devices. 8-Pmmn borophene is a new two-dimensional Dirac material that hosts tilted Dirac cone and chiral, anisotropic massless Dirac fermions. We adopt the transfer matrix method to investigate the Klein tunneling of massless fermions across the smooth NP junctions and NPN junctions of 8-Pmmn borophene. Like the sharp NP junctions of 8-Pmmn borophene, the tilted Dirac cones induce the oblique Klein tunneling. The angle of perfect transmission to the normal incidence is 20.4∘, a constant determined by the Hamiltonian of 8-Pmmn borophene. For the NPN junction, there are branches of the Klein tunneling in the phase diagram. We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of the carriers. Furthermore, we show the oscillation of electrical resistance related to the Klein tunneling in the NPN junctions. One may analyze the pattern of electrical resistance and verify the existence of asymmetric Klein tunneling experimentally.

2D Materials ◽  
2021 ◽  
Author(s):  
Yanfeng Ge ◽  
Zhicui Wang ◽  
Xing Wang ◽  
Wenhui Wan ◽  
Yong Liu

Abstract During the past decade, two-dimensional materials have attracted much attention in superconductivity due to their feasible physical properties and easy chemical modifications. Herein, we use a recently literature reported novel biphenylene sheet (BP sheet) for investigating superconductivity-related physical properties. The electronic states of BP sheet that appeared near the Fermi level are composed of pz orbital of carbon due to sp2 hybridization. Also, an anisotropic Dirac cone is formed just above the Fermi level by crossing two bands comprised of different carbon atoms. One of the two bands is quasi-flat thus leading to a peak of electronic density of states above the Fermi level. In addition, the rotational-vibration phonon mode of the six-membered carbon ring is strongly coupled with electrons. The electron-phonon coupling induces the superconductivity of 6.2 K in BP sheet. Furthermore, both small uniaxial strains and electronic doping can take the Dirac cone and high electronic density of state close to the Fermi level and further raise the superconducting critical temperature to 27.4 K and 21.5 K, respectively. The obtained result suggests that BP sheet with Dirac fermions and superconductivity can be a potential material for the development of future superconducting devices.


2020 ◽  
Vol 412 ◽  
pp. 168022 ◽  
Author(s):  
Jorge Navarro-Giraldo ◽  
Carlos Quimbay

Nanoscale ◽  
2021 ◽  
Author(s):  
Xiaoyang Ma ◽  
Tong Yang ◽  
Dechun Li ◽  
Y. P. Feng

Phase stability and electronic properties of two-dimensional Si1-xGex alloys are investigated via the first-principles method in combination with the cluster expansion and Monte Carlo simulations. The calculated composition-temperature phase diagram...


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Lingli Huang ◽  
Fangyuan Zheng ◽  
Honglin Chen ◽  
Quoc Huy Thi ◽  
Xin Chen ◽  
...  

AbstractMartensite is a needle-shaped microstructure formed by a rapid, diffusionless transformation and significantly affects the mechanical properties of materials. Here, in two-dimensional ReS2 we show that martensite-like domain structures can form via a diffusionless transformation, involving small lattice deformations. By analyzing the strain distribution and topology of the as-grown chemical vapor deposition samples, we find that cooling-induced strain at the ReS2/substrate interface is responsible for the mechanical loading and is essential for martensite-like domain formation. Meanwhile, the effect of cooling rate, flake size and substrate on the microstructures revealed the mechanical origin of the transformation. The strain-induced lattice reconstructions are rationalized and possibly lead to ferroelastic effects. In view of the strong anisotropy in electronic and optical properties in two dimensional materials like ReS2, opportunities exist for strain-correlated micro/nanostructure engineering, which has potential use in next-generation strain-tunable devices.


2020 ◽  
Vol 124 (13) ◽  
pp. 7558-7565 ◽  
Author(s):  
Ji-kai Lyu ◽  
Wei-xiao Ji ◽  
Shu-feng Zhang ◽  
Chang-wen Zhang ◽  
Pei-ji Wang

2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


2007 ◽  
Vol 17 (09) ◽  
pp. 3071-3083 ◽  
Author(s):  
J. M. GONZÀLEZ-MIRANDA

The results of a study of the bifurcation diagram of the Hindmarsh–Rose neuron model in a two-dimensional parameter space are reported. This diagram shows the existence and extent of complex bifurcation structures that might be useful to understand the mechanisms used by the neurons to encode information and give rapid responses to stimulus. Moreover, the information contained in this phase diagram provides a background to develop our understanding of the dynamics of interacting neurons.


The two-dimensional wave diffraction problem, acoustic or electromagnetic, in which a pulse of step-function time dependence is diffracted by a resistive half-plane is solved by assuming dynamic similarity in the solution.


Sign in / Sign up

Export Citation Format

Share Document