Superconductivity in the two-dimensional nonbenzenoid biphenylene sheet with Dirac cone

2D Materials ◽  
2021 ◽  
Author(s):  
Yanfeng Ge ◽  
Zhicui Wang ◽  
Xing Wang ◽  
Wenhui Wan ◽  
Yong Liu

Abstract During the past decade, two-dimensional materials have attracted much attention in superconductivity due to their feasible physical properties and easy chemical modifications. Herein, we use a recently literature reported novel biphenylene sheet (BP sheet) for investigating superconductivity-related physical properties. The electronic states of BP sheet that appeared near the Fermi level are composed of pz orbital of carbon due to sp2 hybridization. Also, an anisotropic Dirac cone is formed just above the Fermi level by crossing two bands comprised of different carbon atoms. One of the two bands is quasi-flat thus leading to a peak of electronic density of states above the Fermi level. In addition, the rotational-vibration phonon mode of the six-membered carbon ring is strongly coupled with electrons. The electron-phonon coupling induces the superconductivity of 6.2 K in BP sheet. Furthermore, both small uniaxial strains and electronic doping can take the Dirac cone and high electronic density of state close to the Fermi level and further raise the superconducting critical temperature to 27.4 K and 21.5 K, respectively. The obtained result suggests that BP sheet with Dirac fermions and superconductivity can be a potential material for the development of future superconducting devices.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1462
Author(s):  
Zhan Kong ◽  
Jian Li ◽  
Yi Zhang ◽  
Shu-Hui Zhang ◽  
Jia-Ji Zhu

The tunneling of electrons and holes in quantum structures plays a crucial role in studying the transport properties of materials and the related devices. 8-Pmmn borophene is a new two-dimensional Dirac material that hosts tilted Dirac cone and chiral, anisotropic massless Dirac fermions. We adopt the transfer matrix method to investigate the Klein tunneling of massless fermions across the smooth NP junctions and NPN junctions of 8-Pmmn borophene. Like the sharp NP junctions of 8-Pmmn borophene, the tilted Dirac cones induce the oblique Klein tunneling. The angle of perfect transmission to the normal incidence is 20.4∘, a constant determined by the Hamiltonian of 8-Pmmn borophene. For the NPN junction, there are branches of the Klein tunneling in the phase diagram. We find that the asymmetric Klein tunneling is induced by the chirality and anisotropy of the carriers. Furthermore, we show the oscillation of electrical resistance related to the Klein tunneling in the NPN junctions. One may analyze the pattern of electrical resistance and verify the existence of asymmetric Klein tunneling experimentally.


IUCrJ ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 990-995 ◽  
Author(s):  
Xiaotian Wang ◽  
Guangqian Ding ◽  
Zhenxiang Cheng ◽  
Hongkuan Yuan ◽  
Xiao-Lin Wang ◽  
...  

In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R 3 c are potential DHMs with multiple Dirac cones.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 270 ◽  
Author(s):  
Toshio Naito ◽  
Ryusei Doi

The compound being investigated is an organic charge-transfer complex of the unsymmetrical donor STF with I3 [STF = bis(ethylenedithio)diselenadithiafulvalene], which is isostructural with α-ET2I3 and α-BETS2I3 [ET = bis(ethylenedithio)tetrathiafulvalene, BETS = bis(ethylenedithio)tetraselenafulvalene]. According to recent studies, the calculated band structure should represent a zero-gap semiconductor at 1 bar that is similar to α-ET2I3 under high pressure (>15 kbar). Such materials have attracted extensive interest because the electrons at the Fermi level can be massless Dirac fermions (MDFs), with relativistic behaviors like those seen in graphene. In fact, α-STF2I3 exhibited nearly temperature-independent resistivity, ρ, (~100–300 K), a phenomenon that is widely observed in zero-gap semiconductors. The non-Arrhenius-type increase in ρ (<~100 K) was consistent with the characteristics of interacting MDFs. The paramagnetic susceptibility, χ, (2–300 K)—as well as the reflectivity, R and optical conductivity, σ, (25–300 K; 400–25,000 cm−1)—were also almost temperature independent. Furthermore, σ was practically independent of wavenumber at ~6000–15,000 cm−1. There was no structural transition based on X-ray studies (90–300 K). Considering all the electrical, magnetic, optical and structural properties of α-STF2I3 at 1 bar, it was concluded that the salt possesses a band structure characterized with Dirac cones, which was consistent with the calculation.


Author(s):  
Xiaoqiu Guo ◽  
Ruixin Yu ◽  
Jingwen Jiang ◽  
Zhuang Ma ◽  
Xiuwen Zhang

Topological insulation is widely predicted in two-dimensional (2D) materials realized by epitaxial growth or van der Waals (vdW) exfoliation. Such 2D topological insulators (TI’s) host many interesting physical properties such...


Author(s):  
Artur Durajski ◽  
Kamil Skoczylas ◽  
Radoslaw Szczesniak

Superconductivity attracts much interest in two-dimensional compounds due to their potential application in nano-superconducting devices. Inspired by a recent experiment reporting the superconducting state in twisted bilayer graphene, here, based...


2020 ◽  
Vol 124 (13) ◽  
pp. 7558-7565 ◽  
Author(s):  
Ji-kai Lyu ◽  
Wei-xiao Ji ◽  
Shu-feng Zhang ◽  
Chang-wen Zhang ◽  
Pei-ji Wang

2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


Sign in / Sign up

Export Citation Format

Share Document