scholarly journals Heat and Mass Transfer in an Adsorbed Natural Gas Storage System Filled with Monolithic Carbon Adsorbent during Circulating Gas Charging

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3274
Author(s):  
Evgeny M. Strizhenov ◽  
Sergey S. Chugaev ◽  
Ilya E. Men’shchikov ◽  
Andrey V. Shkolin ◽  
Anatoly A. Zherdev

Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5–3.5 MPa) at a constant volumetric flow rate (8–18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.

2021 ◽  
Vol 2116 (1) ◽  
pp. 012085
Author(s):  
Evgeny Strizhenov ◽  
Sergey Chugaev ◽  
Ilya Men’shchikov ◽  
Andrey Shkolin ◽  
Igor Shelyakin

Abstract The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between gas flow mode and the heat transfer coefficient between gas and adsorbent is determined under conditions of mass transfer.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012084
Author(s):  
Sergey Chugaev ◽  
Evgeny Strizhenov ◽  
Ilya Men’shchikov ◽  
Andrey Shkolin

Abstract Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, energy efficiency and storage capacity of ANG system strongly depends on thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. At the same time low-temperature charging of ANG system provides its higher storage capacity as well as increased fire and explosion safety due to lower operating pressure and “bound-state” of gas molecules with the surface of adsorbent. In present work, a prototype of low-temperature circulating charging system for ANG storage tank filled with shaped microporous carbon adsorbent was studied experimentally in wide ranges of pressures (0.5-3.5 MPa) and gas flow rates (8-18 m3/h).


2014 ◽  
Vol 53 (11) ◽  
pp. 4522-4523 ◽  
Author(s):  
Pradeepta K. Sahoo ◽  
Mathew John ◽  
Bharat L. Newalkar ◽  
N. V. Choudhary ◽  
K. G. Ayappa

2011 ◽  
Vol 50 (23) ◽  
pp. 13000-13011 ◽  
Author(s):  
Pradeepta K. Sahoo ◽  
Mathew John ◽  
Bharat L. Newalkar ◽  
N. V. Choudhary ◽  
K. G. Ayappa

Sign in / Sign up

Export Citation Format

Share Document