scholarly journals Improved Light Harvesting of Fiber-Shaped Dye-Sensitized Solar Cells by Using a Bacteriophage Doping Method

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3421
Author(s):  
Sung-Jun Koo ◽  
Jae Ho Kim ◽  
Yong-Ki Kim ◽  
Myunghun Shin ◽  
Jin Woo Choi ◽  
...  

Fiber-shaped solar cells (FSCs) with flexibility, wearability, and wearability have emerged as a topic of intensive interest and development in recent years. Although the development of this material is still in its early stages, bacteriophage-metallic nanostructures, which exhibit prominent localized surface plasmon resonance (LSPR) properties, are one such material that has been utilized to further improve the power conversion efficiency (PCE) of solar cells. This study confirmed that fiber-shaped dye-sensitized solar cells (FDSSCs) enhanced by silver nanoparticles-embedded M13 bacteriophage (Ag@M13) can be developed as solar cell devices with better PCE than the solar cells without them. The PCE of FDSSCs was improved by adding the Ag@M13 into an iodine species (I−/I3−) based electrolyte, which is used for redox couple reactions. The optimized Ag@M13 enhanced FDSSC showed a PCE of up to 5.80%, which was improved by 16.7% compared to that of the reference device with 4.97%.

Author(s):  
Eli Danladi ◽  
Jamila Tasiu ◽  
Lucky Endas

Surface plasmon resonance is the effect of electron oscillation in a structure stimulated by incident light. When noble materials such as Ag, Au or Cu are added into the titania (compact or mesoporous) structure of the sensitized solar cell, the plasmonic effect of such materials will result an improved performance of the device. Placing AgNPs at different position will produce a variety of result. In this work the systematic design and formation of plasmonic dye sensitized solar cells (DSSCs) by integrating Ag NPs nanoparticles (NPs) in two distinct configurations; on the c-TiO2 and on m-TiO2 were reported. The power conversion efficiency (PCE), Jsc and Voc of the reference device shows a value of 0.36 %, 1.89 mAcm-2 and 0.45 V. Upon introduction of AgNPs on the c-TiO2, a PCE of 0.64 %, Jsc of 2.53 mAcm-2 and Voc of 0.46 V were recorded, which improved the PCE ~ 63.90 % over that of the prestine device. When AgNPs is introduced on the m-TiO2, a PCE of 0.71 %, Jsc of 2.83 mAcm-2 and Voc of 0.46 V were obtained which which results to increase in power conversion efficiency (PCE) from 0.36 % to 0.71 %, demonstrating ~1.97 time’s enhancement, compared with the reference device without the metal NPs. The improvement is attributed to an increase in photocurrent density due to enhanced light harvesting by silver nanoparticles.


2021 ◽  
Vol 11 (3) ◽  
pp. 674-678
Author(s):  
Shibing Zou ◽  
Lingting Song ◽  
Junhong Duan ◽  
Le Huang ◽  
Weiqing Liu ◽  
...  

2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


2018 ◽  
Vol 6 (42) ◽  
pp. 11444-11456 ◽  
Author(s):  
Jonnadula Venkata Suman Krishna ◽  
Narra Vamsi Krishna ◽  
Towhid H. Chowdhury ◽  
Suryaprakash Singh ◽  
Idriss Bedja ◽  
...  

We have designed and synthesised four novel porphyrin sensitizers for dye-sensitized solar cell applications and shown power conversion efficiency of 10.5%.


Sign in / Sign up

Export Citation Format

Share Document