scholarly journals Enhancing the Photovoltaic Performance of Perovskite Solar Cells Using Plasmonic Au@Pt@Au Core-Shell Nanoparticles

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1263 ◽  
Author(s):  
Bao Wang ◽  
Xiangyu Zhu ◽  
Shuhan Li ◽  
Mengwei Chen ◽  
Nan Liu ◽  
...  

Au@Pt@Au core-shell nanoparticles, synthesized through chemical reduction, are utilized to improve the photoelectric performance of perovskite solar cells (PSCs) in which carbon films are used as the counter electrode, and the hole-transporting layer is not used. After a series of experiments, these Au@Pt@Au core-shell nanoparticles are optimized and demonstrate outstanding optical and electrical properties due to their local surface plasmon resonance and scattering effects. PSC devices containing 1 wt.% Au@Pt@Au core-shell nanoparticles have the highest efficiency; this is attributable to their significant light trapping and utilization capabilities, which are the result of the distinctive structure of the nanoparticles. The power conversion efficiency of PSCs, with an optimal content of plasmonic nanoparticles (1 wt.%), increased 8.1%, compared to normal PSCs, which was from 12.4% to 13.4%; their short-circuit current density also increased by 5.4%, from 20.5 mA·cm−2 to 21.6 mA·cm−2. The open-circuit voltages remaining are essentially unchanged. When the number of Au@Pt@Au core-shell nanoparticles in the mesoporous TiO2 layer increases, the photovoltaic parameters of the former shows a downward trend due to the recombination of electrons and holes, as well as the decrease in electron transporting pathways.

2018 ◽  
Vol 2 (10) ◽  
pp. 2260-2267 ◽  
Author(s):  
P. S. Chandrasekhar ◽  
Ashish Dubey ◽  
Khan Mamun Reza ◽  
M. D. Nazmul Hasan ◽  
Behzad Bahrami ◽  
...  

We improved photovoltaic performance by about 29% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs).


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2364
Author(s):  
Zhiyuan He ◽  
Chi Zhang ◽  
Rangwei Meng ◽  
Xuanhui Luo ◽  
Mengwei Chen ◽  
...  

In this paper, Ag@SiO2 core-shell nanoparticles (NPs) with different shell thicknesses were prepared experimentally and introduced into the photosensitive layer of mesoscopic hole-conductor-free perovskite solar cells (PSCs) based on carbon counter electrodes. By combining simulation and experiments, the influences of different shell thickness Ag@SiO2 core-shell nanoparticles on the photoelectric properties of the PSCs were studied. The results show that, when the shell thickness of 0.1 wt% Ag@SiO2 core-shell nanoparticles is 5 nm, power conversion efficiency is improved from 13.13% to 15.25%, achieving a 16% enhancement. Through the measurement of the relevant parameters of the obtained perovskite film, we found that this gain not only comes from the increase in current density that scholars generally think, but also comes from the improvement of the film quality. Like current gain, this gain is related to the different shell thickness of Ag@SiO2 core-shell nanoparticles. Our research provides a new direction for studying the influence mechanism of Ag@SiO2 core-shell nanoparticles in perovskite solar cells.


2015 ◽  
Vol 787 ◽  
pp. 3-7 ◽  
Author(s):  
S. Karuppuchamy ◽  
C. Brundha

We demonstrated the construction and performance of dye-sensitized solar cells (DSCs) based on nanoparticles of TiO2coated with thin shells of MgO by simple solution growth technique. The XRD patterns confirm the presence of both TiO2and MgO in the core-shell structure. The effect of varied shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that MgO shells of all thicknesses perform as barriers that improve open-circuit voltage (Voc) of the DSCs only at the expense of a larger decrease in short-circuit current density (Jsc). The energy conversion efficiency was greatly dependent on the thickness of MgO on TiO2film, and the highest efficiency of 4.1% was achieved at the optimum MgO shell layer.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
I. J. Ogundana ◽  
S. Y. Foo

Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.


Author(s):  
Puteri Nor Aznie Fahsyar ◽  
Norasikin Ahmad Ludin ◽  
Noor Fadhilah Ramli ◽  
Mohamad Firdaus Mohamad Noh ◽  
Rozan Mohamad Yunus ◽  
...  

AbstractThe establishment of perovskite solar cells (PSCs) in terms of their power-conversion efficiency (PCE) over silicon-based solar cells is undeniable. The state-of-art of easy device fabrications of PSCs has enabled them to rapidly gain a place in third-generation photovoltaic technology. Numerous obstacles remain to be addressed in device efficiency and stability. Low performance owing to easily degraded surface and deterioration of perovskite film quality resulting from humidity are issues that often arise. This work explored a new approach to producing high-quality perovskite films prepared under high relative humidity (RH = 40%–50%). In particular, the ubiquitous 4-tert-butylpyridine (tBp) was introduced into lead iodide (PbI2) precursor as an additive, and the films were fabricated using a two-step deposition method followed by a delay-deposition technique of methylammonium iodide (MAI). High crystallinity and controlled nucleation of MAI were needed, and this approach revealed the significance of time control to ensure high-quality films with large grain size, high crystallography, wide coverage on substrate, and precise and evenly coupled MAI molecules to PbI2 films. Compared with the two-step method without time delay, a noticeable improvement in PCE from 3.2 to 8.3% was achieved for the sample prepared with 15 s time delay. This finding was primarily due to the significant enhancement in the open-circuit voltage, short-circuit current, and fill factor of the device. This strategy can effectively improve the morphology and crystallinity of perovskite films, as well as reduce the recombination of photogenerated carriers and increase of current density of devices, thereby achieving improved photovoltaic performance.


Plasmonics ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Nilesh Kumar Pathak ◽  
Nikhil Chander ◽  
Vamsi K. Komarala ◽  
R. P. Sharma

Sign in / Sign up

Export Citation Format

Share Document