scholarly journals Astaxanthin Prevents Atrophy in Slow Muscle Fibers by Inhibiting Mitochondrial Reactive Oxygen Species via a Mitochondria-Mediated Apoptosis Pathway

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 379
Author(s):  
Luchuanyang Sun ◽  
Nobuyuki Miyaji ◽  
Min Yang ◽  
Edward M. Mills ◽  
Shigeto Taniyama ◽  
...  

Astaxanthin (AX) is a carotenoid that exerts potent antioxidant activity and acts in the lipid bilayer. This study aimed to investigate the effects of AX on muscle-atrophy-mediated disturbance of mitochondria, which have a lipid bilayer. Tail suspension was used to establish a muscle-atrophied mouse model. AX diet fed to tail-suspension mice prevented loss of muscle weight, inhibited the decrease of myofiber size, and restrained the increase of hydrogen peroxide (H2O2) production in the soleus muscle. Additionally, AX improved downregulation of mitochondrial respiratory chain complexes I and III in the soleus muscle after tail suspension. Meanwhile, AX promoted mitochondrial biogenesis by upregulating the expressions of adenosine 5′-monophosphate–activated protein kinase (AMPK) α-1, peroxisome proliferator–activated receptor (PPAR)-γ, and creatine kinase in mitochondrial (Ckmt) 2 in the soleus muscle of tail-suspension mice. To confirm the AX phenotype in the soleus muscle, we examined its effects on mitochondria using Sol8 myotubes derived from the soleus muscle. We found that AX was preferentially detected in the mitochondrial fraction; it significantly suppressed mitochondrial reactive oxygen species (ROS) production in Sol8 myotubes. Moreover, AX inhibited the activation of caspase 3 via inhibiting the release of cytochrome c into the cytosol in antimycin A–treated Sol8 myotubes. These results suggested that AX protected the functional stability of mitochondria, alleviated mitochondrial oxidative stress and mitochondria-mediated apoptosis, and thus, prevented muscle atrophy.

Author(s):  
Luchuanyang Sun ◽  
Nobuyuki Miyaji ◽  
Min Yang ◽  
Edward M. Mills ◽  
Shigeto Taniyama ◽  
...  

Astaxanthin (AX) is a carotenoid that exerts potent antioxidant activity and acts in the lipid bilayer. This study aimed to investigate the effects of AX on muscle atrophy-mediated disturbance of mitochondria that have a lipid bilayer. Tail suspension was used to establish muscle- atrophied mouse models. AX diet fed to tail-suspension mice prevented loss of muscle weight and decreased myofiber size in the soleus muscle. Additionally, AX improved down-regulation of mitochondrial respiratory chain complexes II and III in the soleus muscle after tail suspension. To confirm the AX phenotype in the soleus muscle, we examined its effects on mitochondria using Sol8 myotubes derived from the soleus muscle. We found that AX was preferentially detected in the mitochondrial fraction; it significantly suppressed mitochondrial complex III-driven production of reactive oxygen species in Sol8 myotubes. Moreover, AX inhibited the activation of caspase 3 via inhibiting the release of cytochrome c into the cytosol in antimycin A-treated Sol8 myotubes. These results suggested that AX inhibited mitochondrial oxidative stress through a mitochondria-mediated apoptosis pathway and thus prevented muscle atrophy.


2020 ◽  
Vol 129 (1) ◽  
pp. 124-132 ◽  
Author(s):  
Hiroaki Eshima ◽  
Piyarat Siripoksup ◽  
Ziad S. Mahmassani ◽  
Jordan M. Johnson ◽  
Patrick J. Ferrara ◽  
...  

The premise of this study was to examine the efficacy of genetic suppression of mitochondrial reactive oxygen species (ROS) to attenuate disuse-induced muscle atrophy and muscle weakness. Neutralization of mitochondrial ROS by MCAT expression was insufficient to rescue muscle atrophy and muscle weakness.


Sign in / Sign up

Export Citation Format

Share Document