apoptosis pathway
Recently Published Documents


TOTAL DOCUMENTS

1186
(FIVE YEARS 578)

H-INDEX

61
(FIVE YEARS 13)

2022 ◽  
Vol 12 (5) ◽  
pp. 1034-1039
Author(s):  
Xiaoxiang Wang ◽  
Lan Yu ◽  
Xing Xiong ◽  
Yao Chen ◽  
Bo Men

Bone marrow mesenchymal stem cells (BMSCs) are capable of multipolar differentiation and repairing injured tissues. Herein, we aimed to investigate the mechanism by how BMSCs modulate the apoptotic pathway in the acute pancreatitis (AP). In this study, primary BMSCs were cultured and administrated into 10 AP mice while 10 healthy mice were taken as a blank group and 10 AP mice as a control group. The mouse pancreatic tissues were assessed by HE staining and evaluated by pancreatitis score and serum amylase detection. Level of inflammatory factors CRP and TNF-α was measured by ELISA and PIPK1, PIPK3, MLKL and Caspase-8 expression was detected by RT-qPCR and Western blot. The pancreatitis score (7.29±1.36) and the serum amylase score of (453.66±103.67) mu/ml of BMSCs group was significantly higher than that of control group, indicating increased tissue repair after BMSCs treatment. BMSCs group exhibited a higher level of CRP (711.01±115.31) and TNF-α (132.81±22.13) in serum compared to control group (p < 0.05). PIPK1, PIPK3, and MLKL expression in BMSCs group decreased (p < 0.05) whereas Caspase-8 was increased (p < 0.05). On the other hand, BMSCs group presented upregulated PIPK1, PIPK3, and MLKL (p < 0.05) and downregulated Caspase-8 (p < 0.05). In conclusion, BMSCs regulate cell apoptosis by upregulating Caspase-8 expression, and downregulating PIPK1, PIPK3 and MLKL level, thereby alleviating the inflammation in AP.


Author(s):  
К.П. Кравченко ◽  
К. Л. Козлов ◽  
А.О. Дробинцева ◽  
Д.С. Медведев ◽  
В.О. Полякова

Для понимания патогенеза дилатационной кардиомиопатии (ДКМП) необходимо установить молекулярно-клеточные механизмы старения миокарда, в том числе связанные с программируемой клеточной гибелью, молекулярные механизмы которого практически не изучены. Цель работы - изучение маркеров апоптоза в кардиомиоцитах у пациентов с ДКМП in vitro. В работе использовали метод первичных диссоциированных клеточных культур и метод иммунофлюоресцентной конфокальной лазерной микроскопии. Для моделирования клеточного старения использовали клетки 3-го и 14-го пассажей, соответствующие «молодым» и «старым» культурам. На молекулярном уровне старение клеток кардиомиоцитов сопровождалось повышением экспрессии р16 в 2 раза по сравнению с «молодыми культурами» как в контрольной, так и в группе с ДКМП. Также установлено, что экспрессия р16 в культурах, взятых от пациентов с патологией, была в 2 раза выше, чем в аналогичных культурах от здоровых пациентов. Экспрессия р21 была повышена в группе с ДКМП по сравнению с контрольной группой, однако при старении культуры экспрессия p21 не изменялась, оставаясь на высоком уровне. Наиболее значимые различия были получены при сравнении экспрессии Bax в культуре клеток кардиомиоцитов из группы с ДКМП в «молодой» культуре с нормой - в 3,2 раза. Старение клеток миокарда на молекулярном уровне проявлялось в повышении экспрессии белка Baх, именно он является запускающим механизмом митохондриального пути апоптоза. Возможно, этот путь клеточной гибели является превалирующем при ДКМП. To understand the pathogenesis of dilated cardiomyopathy (DCMP), it is necessary to establish the molecular-cellular mechanisms of myocardial aging, including those associated with programmed cell death, the molecular mechanisms of which have not been practically studied. The aim of this work is to study markers of apoptosis in cardiomyocytes of patients with DCMP in vitro. We used the method of primary dissociated cell cultures and the method of immunofluorescence confocal laser microscopy. Cells of the 3 and 14 passages, corresponding to «young» and «old» cultures, were used to simulate cellular senescence. Results. At the molecular level, aging of cardiomyocyte cells was accompanied by a twofold increase in the expression of p16 compared to «young cultures» both in the control group and in the group with DCMP. It was also found that the expression of p16 in cultures taken from patients with pathology was 2 times higher than in similar cultures from healthy patients. The expression of p21 was increased in the group with DCMP compared to the control; however, with aging of the culture, the expression of p21 did not change, remaining at a significant level. The most significant differences were obtained when comparing the expression of Bax in the cell culture of cardiomyocytes from the group with DCMP in a «young» culture compared with the norm, 3,2 times. Aging of myocardial cells at the molecular level was manifested in an increase in the expression of the Bax protein, which is the triggering mechanism of the mitochondrial apoptosis pathway. It is possible that this pathway of cell death is prevalent in DCMP.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Minghui Jin ◽  
Yinxue Shan ◽  
Yan Peng ◽  
Ping Wang ◽  
Qi Li ◽  
...  

The insecticidal Vip3 proteins, secreted by Bacillus thuringiensis (Bt) during its vegetative growth phase, are currently used in Bt crops to control insect pests, and are genetically distinct from known insecticidal Cry proteins. Compared with Cry toxins, the mechanisms of Vip3 toxins are still poorly understood. Here, the responses of Spodoptera frugiperda larvae after Vip3Aa challenge are characterized. Using an integrative analysis of transcriptomics and proteomics, we found that Vip3Aa has enormous implications for various pathways. The downregulated genes and proteins were mainly enriched in metabolic pathways, including the insect hormone synthesis pathway, whereas the upregulated genes and proteins were mainly involved in the caspase-mediated apoptosis pathway, along with the MAPK signaling and endocytosis pathways. Moreover, we also identified some important candidate genes involved in apoptosis and MAPKs. The present study shows that exposure of S. frugiperda larvae to Vip3Aa activates apoptosis pathways, leading to cell death. The results will promote our understanding of the host response process to the Vip3Aa, and help us to better understand the mode of action of Vip3A toxins.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 114
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Mohammed F. Aldawsari ◽  
Khaled Almansour ◽  
Amr S. Abu Lila

Furanodienone (FDN), a major bioactive component of sesquiterpenes produced from Rhizoma curcumae, has been repeatedly acknowledged for its intrinsic anticancer efficacy against different types of cancer. In this study, we aimed to investigate the cytotoxic potential of furanodienone against human lung cancer (NSCLC A549) cells in vitro, as well as its underlying molecular mechanisms in the induction of apoptosis. Herein, we found that FDN significantly inhibited the proliferation of A549 cells in a dose-dependent manner. In addition, treatment with FDN potentially triggered apoptosis in A549 cells via not only disrupting the nuclear morphology, but by activating capsase-9 and caspase-3 with concomitant modulation of the pro- and antiapoptotic gene expression as well. Furthermore, FDN revealed its competence in inducing cell cycle arrest at G0/G1 phase in A549 cells, which was associated with decreased expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4), along with increased expression of CDK inhibitor p21Cip1. Intriguingly, FDN treatment efficiently downregulated the Wnt signaling pathway, which was correlated with increased apoptosis, as well as cell cycle arrest, in A549 cells. Collectively, FDN might represent a promising adjuvant therapy for the management of lung cancer.


2022 ◽  
Author(s):  
Hasni Arsad ◽  
Noor Zafirah Ismail ◽  
Salwani Md S ◽  
Ismail Abiola Adebayo ◽  
Zaleha Md T ◽  
...  

Abstract Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the molecular mechanisms involved in C. nutans extract-treated MCF7 cells are unknown. Hence, the molecular mechanism of apoptosis in treated MCF7 was investigated in this current study. This study was intended to subfractionate CN-Dcm extract using column chromatography and analysed the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 0.99 µg/mL) and substantially induced apoptosis in the MCF7 cells. SF2 extract significantly downregulated BCL-2 expression and upregulated P53, BAX, BID, BCL-2, caspase-8, caspase-9 and caspase-3 expressions in treated MCF7 cells. Therefore, SF2 extract was analysed using liquid chromatography coupled to quadrupole time–of–flight mass spectrometry (LC-QTOF-MS), which confirmed the presence of bioactive chemical compounds. Thus, it can be concluded that the compounds found in SF2 extract may potentially cause apoptosis in MCF7 cells through intrinsic and extrinsic pathways.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Deivendran Rengaraj ◽  
Sohyoung Won ◽  
Kyung Min Jung ◽  
Seung Je Woo ◽  
Haerang Lee ◽  
...  

AbstractDNA is susceptible to damage by various sources. When the DNA is damaged, the cell repairs the damage through an appropriate DNA repair pathway. When the cell fails to repair DNA damage, apoptosis is initiated. Although several genes are involved in five major DNA repair pathways and two major apoptosis pathways, a comprehensive understanding of those gene expression is not well-understood in chicken tissues. We performed whole-transcriptome sequencing (WTS) analysis in the chicken embryonic fibroblasts (CEFs), stage X blastoderms, and primordial germ cells (PGCs) to uncover this deficiency. Stage X blastoderms mostly consist of undifferentiated progenitor (pluripotent) cells that have the potency to differentiate into all cell types. PGCs are also undifferentiated progenitor cells that later differentiate into male and female germ cells. CEFs are differentiated and abundant somatic cells. Through WTS analysis, we identified that the DNA repair pathway genes were expressed more highly in blastoderms and high in PGCs than CEFs. Besides, the apoptosis pathway genes were expressed low in blastoderms and PGCs than CEFs. We have also examined the WTS-based expression profiling of candidate pluripotency regulating genes due to the conserved properties of blastoderms and PGCs. In the results, a limited number of pluripotency genes, especially the core transcriptional network, were detected higher in both blastoderms and PGCs than CEFs. Next, we treated the CEFs, blastoderm cells, and PGCs with hydrogen peroxide (H2O2) for 1 h to induce DNA damage. Then, the H2O2 treated cells were incubated in fresh media for 3–12 h to observe DNA repair. Subsequent analyses in treated cells found that blastoderm cells and PGCs were more likely to undergo apoptosis along with the loss of pluripotency and less likely to undergo DNA repair, contrasting with CEFs. These properties of blastoderms and PGCs should be necessary to preserve genome stability during the development of early embryos and germ cells, respectively.


Author(s):  
Eman I. Hassanen ◽  
Ahmed M. Hussien ◽  
Sally Mehanna ◽  
Marwa A. Ibrahim ◽  
Neven H. Hassan

Abstract Pesticides are viewed as a major wellspring of ecological contamination and causing serious risky consequences for people and animals. Imidacloprid (IM) and hexaflumuron (HFM) are extensively utilized insect poisons for crop assurance on the planet. A few investigations examined IM harmfulness in rodents, but its exact mechanism hasn’t been mentioned previously as well as the toxicity of HFM doesn’t elucidate yet. For this reason, the present study was designed to explore the mechanism of each IM and HFM–evoked rat liver and kidney toxicity and to understand its molecular mechanism. 21 male Wistar albino rats were divided into 3 groups, as follows: group (1), normal saline; group (2), IM; and group (3), HFM. Both insecticides were orally administered every day for 28 days at a dose equal to 1/10 LD50 from the active ingredient. After 28 days postdosing, rats were anesthetized to collect blood samples then euthanized to collect liver and kidney tissue specimens. The results showed marked changes in walking, body tension, alertness, and head movement with a significant reduction in rats’ body weight in both IM and HFM receiving groups. Significant increases in MDA levels and decrease of GHS levels were recorded in liver and kidney homogenates of either IM or HFM groups. Liver and kidney tissues obtained from both pesticide receiving groups showed extensive histopathological alterations with a significant increase in the serum levels of ALT, AST, urea, and creatinine and a decrease in total proteins, albumin, and globulin levels. In addition, there was upregulation of the transcript levels of casp-3, JNK, and HO-1 genes with strong immunopositivity of casp-3, TNF-ὰ, and NF-KB protein expressions in the liver and kidneys of rats receiving either IM or HFM compared with the control group. In all studied parameters, HFM caused hepatorenal toxicity more than those induced by IM. We can conclude that each IM and HFM provoked liver and kidneys damage through overproduction of ROS, activation of NF-KB signaling pathways and mitochondrial/JNK-dependent apoptosis pathway.


2022 ◽  
Vol 23 (2) ◽  
pp. 643
Author(s):  
Izchel Figarola-Centurión ◽  
Martha Escoto-Delgadillo ◽  
Gracia Viviana González-Enríquez ◽  
Juan Ernesto Gutiérrez-Sevilla ◽  
Eduardo Vázquez-Valls ◽  
...  

HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain–blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer’s and Parkinson’s disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.


2021 ◽  
Vol 19 (4) ◽  
pp. e46
Author(s):  
Sonali Rath ◽  
Manaswini Jagadeb ◽  
Ruchi Bhuyan

Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski’s Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein’s active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.


Sign in / Sign up

Export Citation Format

Share Document