arginase ii
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 24)

H-INDEX

36
(FIVE YEARS 2)

Author(s):  
Fudong Li ◽  
Xiaofei Sun ◽  
Bing Zheng ◽  
Kaiqiang Sun ◽  
Jian Zhu ◽  
...  

Intervertebral disc degeneration (IDD) has been generally accepted as the major cause of low back pain (LBP), which imposes massive clinical and socioeconomic burdens. Previous studies have demonstrated that oxidative stress and inflammation-induced senescence and apoptosis of nucleus pulposus cells (NPCs) are the main cellular processes that cause IDD. Arginase II (ARG2), an enzyme involved in a variety of pathological processes, including cellular senescence, apoptosis, oxidative stress, and inflammation, has been shown to promote degeneration in several degenerative diseases, including osteoarticular diseases. Based on previous studies, we hypothesized that ARG2 deficiency might be conducive to the treatment of IDD by inhibiting the dyshomeostasis of the extracellular matrix (ECM), and the oxidative stress and inflammatory response-induced senescence and apoptosis via NF-κB. In this study, we found that ARG2 deficiency inhibited senescence and apoptosis of NPCs, and degeneration of the ECM induced by oxidative stress and the inflammatory response. Similar results were found with the selective NF-κB pathway inhibitor JSH-23. In contrast, overexpression of ARG2 had the opposite effect. Taken together, our results suggest that ARG2 deficiency prevents IDD via NF-κB, and may therefore, be a potential therapeutic strategy for IDD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Siavash Mashhouri ◽  
Petya Koleva ◽  
Mai Huynh ◽  
Isobel Okoye ◽  
Shima Shahbaz ◽  
...  

Mature erythrocytes are the major metabolic regulators by transporting oxygen throughout the body. However, their precursors and progenitors defined as CD71+ Erythroid Cells (CECs) exhibit a wide range of immunomodulatory properties. Here, we uncover pronounced sexual dimorphism in CECs. We found female but not male mice, both BALB/c and C57BL/6, and human females were enriched with CECs. CECs, mainly their progenitors defined as CD45+CECs expressed higher levels of reactive oxygen species (ROS), PDL-1, VISTA, Arginase II and Arginase I compared to their CD45− counterparts. Consequently, CECs by the depletion of L-arginine suppress T cell activation and proliferation. Expansion of CECs in anemic mice and also post-menstrual cycle in women can result in L-arginine depletion in different microenvironments in vivo (e.g. spleen) resulting in T cell suppression. As proof of concept, we found that anemic female mice and mice adoptively transferred with CECs from anemic mice became more susceptible to Bordetella pertussis infection. These observations highlight the role of sex and anemia-mediated immune suppression in females. Notably, enriched CD45+CECs may explain their higher immunosuppressive properties in female BALB/c mice. Finally, we observed significantly more splenic central macrophages in female mice, which can explain greater extramedullary erythropoiesis and subsequently abundance of CECs in the periphery. Thus, sex-specific differences frequency in the frequency of CECs might be imprinted by differential erythropoiesis niches and hormone-dependent manner.


Author(s):  
Ruhi Dixit ◽  
Abhik Debnath ◽  
Suman Mishra ◽  
Rajnikant Mishra ◽  
Satyanam K. Bhartiya ◽  
...  

Arginase expression has been recently shown to increase in numerous disease states like neurodegeneration, inflammation, and malignancies. Although it has been found to be functionally important in various disease pathologies, little is known about its role in wound healing. Here, we look at the expression of arginase and its isoforms in chronic non-healing wounds and also study the expression of nitric oxide synthase (NOS) and oxidative stress enzymes in them. Wound tissues and blood samples were collected at the time of index presentation and follow-up from 61 chronic non-healing wound cases. The expression patterns of arginase isoenzymes, NOS, superoxide dismutases (SOD), lactic acid dehydrogenase (LDH), and catalase were examined by using enzyme-linked immunosorbent assay, immunohistochemistry, and western blot analysis at the transcript and protein level. We reported a significant decrease of serum arginase levels in chronic nonhealing wounds in the progress of wound healing. Interestingly, tissue arginase levels were found to be increased with improved wound condition at follow-up. Tissue NOS, LDH, and catalase activity were also found to be increased with the progress of healing, whereas SOD levels were downregulated. Our findings reported increased expression at the transcript level of arginase-I and arginase-II in chronic non-healing wounds for the first time. In conclusion, we observed decreased serum arginase levels in completely healed patients as compared to non-healed cases. Our study findings support the hypothesis that inhibition of the activity of arginase delays wound healing. Arginase and iNOS may also find their place in the future as possible biomarkers for wound healing.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ji Huang ◽  
Xiujie Liang ◽  
Diogo Ladeiras ◽  
Benoit Fellay ◽  
Xiu-Fen Ming ◽  
...  

AbstractThe aging kidney undergoes complex changes and is vulnerable to injury and development of chronic kidney disease (CKD) with preponderance affecting more women than men. Evidence has been presented that the type-II L-arginine:ureohydrolase, arginase-II (Arg-II) plays a role in the acceleration of aging. Arg-II is highly expressed in the kidney. However, the role of Arg-II in renal aging is not known. This study is to investigate whether Arg-II is involved in the kidney aging process dependently on sex. Arg-II level in the kidney of wild type (WT) mice is significantly elevated with aging, which is accompanied by an increase in expression of the inflammatory cytokines/chemokines, tissue macrophages, factors involved in fibrosis, and tubulointestitial fibrosis in both males and females. This renal aging phenotype is significantly suppressed in arg-II−/− mice, mainly in the females in which Arg-II level is higher than in the males. Importantly, numerous factors such as IL-1β, MCP1, VCAM-1, and TGFβ1 are mainly localized in the proximal tubular S3 segment cells expressing Arg-II in the aging kidney. In human proximal tubular cells (HK-2), TNF-α enhances adhesion molecule expression dependently on Arg-II upregulation. Overexpression of Arg-II in the cells enhances TGFβ1 levels which is prevented by mitochondrial ROS inhibition. In summary, our study reveals that renal proximal tubular Arg-II plays an important role in the kidney aging process in females. Arg-II could be a promising therapeutic target for the treatment and prevention of aging-associated kidney diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ji Huang ◽  
Diogo Ladeiras ◽  
Yi Yu ◽  
Xiu-Fen Ming ◽  
Zhihong Yang

The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18–24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1β, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II−/− mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II−/− mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.


Author(s):  
Gustavo H. Oliveira-Paula ◽  
Fernanda Borchers Coeli-Lacchini ◽  
Letícia Perticarrara Ferezin ◽  
Graziele C. Ferreira ◽  
Lucas C. Pinheiro ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii290-iii290
Author(s):  
Aaminah Khan ◽  
Laura Gamble ◽  
Ruby Pandher ◽  
Mark R Burns ◽  
Francis Mussai ◽  
...  

Abstract DIPG is an aggressive pediatric brainstem tumor, with a median survival below 12 months. Tumor cells are dependent upon arginine, a semi-essential amino acid, metabolised by arginase enzymes into ornithine, a pivotal precursor to the polyamine pathway. Polyamines, frequently upregulated in cancer, are intracellular polycations controlling key biological processes – the inhibition of which we have previously shown to be highly efficacious in preclinical DIPG models. Pegylated arginase (BCT-100) has recently been shown to significantly delay tumor development, prolonging survival of neuroblastoma-prone Th-MYCN mice. This study investigated the effects of arginine depletion therapy as a single agent and in combination with polyamine pathway inhibitors in DIPG. We found that ARG2, the gene encoding for arginase II, is expressed significantly more highly in DIPG tumors compared to normal brain. Arginine depletion via BCT-100 reduced DIPG cell proliferation and colony formation in patient-derived cell lines. Using orthotopic patient-derived xenograft models of DIPG, we found that frequent dosing of BCT-100 (4x/week) significantly delayed tumor development and increased the survival of the mice (p<0.0001). DFMO is an FDA-approved inhibitor of the enzyme ornithine decarboxylase, a key driver of polyamine synthesis. The combination of BCT-100 with DFMO led to significant enhancement in DIPG survival (p<0.005 compared to single agent treatments). Triple combination therapy with addition of the polyamine transport inhibitor AMXT-1501 led to a potent and profound improvement in survival. These data show that arginine depletion therapy using BCT-100 combined with dual polyamine inhibitory agents represents a potentially exciting new approach for the treatment of DIPG.


2020 ◽  
Vol 150 (12) ◽  
pp. 3133-3140
Author(s):  
Mahmoud A Mohammad ◽  
Inka C Didelija ◽  
Juan C Marini

ABSTRACT Background Sex differences in plasma concentration of arginine and arginase activity of different tissues have been reported in mice. In addition, male but not female C57BL/6 mice have a dietary arginine requirement for growth. Objective The goal of this research was to test the hypothesis that arginase II is a key factor in the sexual dimorphism of arginine metabolism. Methods Young adult male and female wild type (WT), and heterozygous and arginase II knockout mice on a C57BL/6 background mice were infused with labeled citrulline, arginine, ornithine, phenylalanine, and tyrosine to determine the rates of appearance and interconversion of these amino acids. Tissue arginase activity was measured in the liver, heart, jejunum, kidney, pancreas, and spleen with an arginine radioisotope. The effect of genotype, sex, and their interaction was tested. Results Female mice produced ∼36% more citrulline than their male littermates, which translated into a greater arginine endogenous synthesis, flux, and plasma concentration (42, 6, and 27%, respectively; P < 0.001). Female mice also had a greater phenylalanine flux (10%) indicating a greater rate of whole protein breakdown; however, they had a lower protein synthesis rate than males (18%; P < 0.001). The ablation of arginase II reduced the production of citrulline and the de novo synthesis of arginine in females and increased the rate of appearance of arginine and plasma arginine concentration in male mice (16 and 22%, respectively; P < 0.001). No effect of arginase II deletion, however, was observed for whole-body protein kinetics. Arginase II activity was present in the pancreas, kidney, jejunum, and spleen; WT females had a ∼2-fold greater renal arginase activity than their WT counterparts. Conclusions A clear sexual dimorphism exists in the endogenous synthesis of arginine and its disposal. Female mice have a greater arginine availability than their male littermates. The ablation of arginase II increases arginine availability in male mice.


2020 ◽  
Vol 114 (3) ◽  
pp. e351
Author(s):  
Charalampos Chatzicharalampous ◽  
David Bai ◽  
Sana Khan ◽  
Robert Morris ◽  
Husam M. Abu-Soud

Sign in / Sign up

Export Citation Format

Share Document