scholarly journals Biosensor and microfluidic chip based Point-of-care systems for disease diagnosis

Author(s):  
Ling Ling Sun ◽  
Yi Fu ◽  
Willie Ng ◽  
Donna, Xiaodong zhou ◽  
Menghan Kuok
2019 ◽  
Vol 21 (1) ◽  
pp. 134 ◽  
Author(s):  
Wei Xu ◽  
Daniel Wang ◽  
Derek Li ◽  
Chung Chiun Liu

Detection of biomarkers has raised much interest recently due to the need for disease diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers, antibodies are an important type of detection target due to their potential for indicating disease progression stage and the efficiency of therapeutic antibody drug treatment. In this review, electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for electrochemical detection are suggested. For optical transduction, a rapid and programmable platform for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies have demonstrated their potential for resolving current challenges in antibody detection such as high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling detection. This review provides a general update for recent developments in antibody detection strategies and potential solutions for future clinical point-of-care systems.


2008 ◽  
Vol 94 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Marco Bianchessi ◽  
Sarah Burgarella ◽  
Marco Cereda

The development of new powerful applications and the improvement in fabrication techniques are promising an explosive growth in lab-on-chip use in the upcoming future. As the demand reaches significant levels, the semiconductor industry may enter in the field, bringing its capability to produce complex devices in large volumes, high quality and low cost. The lab-on-chip concept, when applied to medicine, leads to the point-of-care concept, where simple, compact and cheap instruments allow diagnostic assays to be performed quickly by untrained personnel directly at the patient's side. In this paper, some practical and economical considerations are made to support the advantages of point-of-care testing. A series of promising technologies developed by STMicroelectronics on lab-on-chips is also presented, mature enough to enter in the common medical practice. The possible use of these techniques for cancer research, diagnosis and treatment are illustrated together with the benefits offered by their implementation in point-of-care testing.


2021 ◽  
Author(s):  
Mattia D'Agostino ◽  
Eleonora Pavoni ◽  
Alice Romagnoli ◽  
Chiara Ardiccioni ◽  
Stefano Motta ◽  
...  

Fast, reliable and point-of-care systems to detect the SARS-CoV-2 infection are crucial to contain viral spreading and to adopt timely clinical treatments. Many of the rapid detection tests currently in use are based on antibodies that bind viral proteins. However, newly appearing virus variants accumulate mutations in their RNA sequence and produce proteins, such as Spike, that may show reduced binding affinity to these diagnostic antibodies, resulting in less reliable tests and in the need for continuous update of the sensing systems. Here we propose a graphene field-effect transistor (gFET) biosensor which exploits the key interaction between the Spike protein and the human ACE2 receptor. This interaction is one of the determinants of host infections and indeed recently evolved Spike variants were shown to increase affinity for this receptor. Through extensive computational analyses we show that a chimeric ACE2-Fc construct mimics the ACE2 dimer, normally present on host cells membranes, better than its soluble truncated form. We demonstrate that ACE2-Fc functionalized gFET is effective for in vitro detection of Spike and outperforms the same chip functionalized with either a diagnostic antibody or the soluble ACE2. Our sensor is implemented in a portable, wireless, point-of-care device and successfully detected both alpha and gamma virus variants in patient clinical samples. As incomplete immunization, due to vaccine roll-out, may offer new selective grounds for antibody-escaping virus variants, our biosensor opens to a class of highly sensitive and variant-robust SARS-CoV-2 detection systems.


2021 ◽  
Author(s):  
Guorui Chen ◽  
Xiao Xiao ◽  
Xun Zhao ◽  
Trinny Tat ◽  
Michael Bick ◽  
...  

2002 ◽  
pp. 187-189 ◽  
Author(s):  
Chong H. Ahn ◽  
Jin-Woo Choi ◽  
Aniruddha Puntambekar ◽  
Chien-Chong Hong ◽  
Xiaoshan Zhu ◽  
...  

2011 ◽  
Vol 36 (3) ◽  
pp. 109-112
Author(s):  
Brittany Reinemund

Sign in / Sign up

Export Citation Format

Share Document