scholarly journals Recent Developments of Electrochemical and Optical Biosensors for Antibody Detection

2019 ◽  
Vol 21 (1) ◽  
pp. 134 ◽  
Author(s):  
Wei Xu ◽  
Daniel Wang ◽  
Derek Li ◽  
Chung Chiun Liu

Detection of biomarkers has raised much interest recently due to the need for disease diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers, antibodies are an important type of detection target due to their potential for indicating disease progression stage and the efficiency of therapeutic antibody drug treatment. In this review, electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for electrochemical detection are suggested. For optical transduction, a rapid and programmable platform for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies have demonstrated their potential for resolving current challenges in antibody detection such as high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling detection. This review provides a general update for recent developments in antibody detection strategies and potential solutions for future clinical point-of-care systems.

2008 ◽  
Vol 94 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Marco Bianchessi ◽  
Sarah Burgarella ◽  
Marco Cereda

The development of new powerful applications and the improvement in fabrication techniques are promising an explosive growth in lab-on-chip use in the upcoming future. As the demand reaches significant levels, the semiconductor industry may enter in the field, bringing its capability to produce complex devices in large volumes, high quality and low cost. The lab-on-chip concept, when applied to medicine, leads to the point-of-care concept, where simple, compact and cheap instruments allow diagnostic assays to be performed quickly by untrained personnel directly at the patient's side. In this paper, some practical and economical considerations are made to support the advantages of point-of-care testing. A series of promising technologies developed by STMicroelectronics on lab-on-chips is also presented, mature enough to enter in the common medical practice. The possible use of these techniques for cancer research, diagnosis and treatment are illustrated together with the benefits offered by their implementation in point-of-care testing.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 809 ◽  
Author(s):  
Hepojoki ◽  
Kareinen ◽  
Strandin ◽  
Vaheri ◽  
Holthöfer ◽  
...  

Rapid point-of-care testing is a megatrend in infectious disease diagnosis. We have introduced a homogeneous immunoassay concept, which is based on the simultaneous binding of antigen and protein L to a given immunoglobulin molecule. The complex formation is detected utilizing time-resolved Förster resonance energy transfer between antigen-attached donor and acceptor-labeled protein L, hence the name LFRET. Here, we demonstrate that urine can be used as a sample matrix in LFRET-based serodiagnostics. We studied urine samples collected during the hospitalization and recovery of patients with acute Puumala orthohantavirus (PUUV) infection. We compared PUUV antibody-specific LFRET signals in urine to those in plasma, and found excellent correlation in the test outcomes The LFRET test from urine was positive in 40/40 patients with acute PUUV infection. PUUV causes a mild form of hemorrhagic fever with renal syndrome, characterized by acute kidney injury and proteinuria. Immunofluorescence and western blotting demonstrated PUUV-IgG and -IgA in urine, however, the presence of intact immunoglobulins did not fully explain the LFRET signals. We purified free light chains (FLCs) from both urine and serum of healthy volunteers and patients with acute PUUV infection, and verified the presence of antigen-specific FLCs. Antigen-specific FLCs provide a new means for non-invasive antibody detection and disease diagnosis.


2012 ◽  
Vol 40 (4) ◽  
pp. 635-639 ◽  
Author(s):  
Dejian Zhou

Over the last 10 years, fluorescent semiconductor QD (quantum dot)–biomolecule conjugates have emerged as a powerful new sensing platform showing great potential in a wide range of applications in biosensing, environmental monitoring and disease diagnosis. The present mini-review is a brief account of the recent developments in QD–NA (nucleic acid), particularly NA aptamer, conjugate-based biosensors using the FRET (Förster resonance energy transfer) readout mechanism. It starts with a brief introduction to the NA aptamer and QD-FRET, followed by example approaches to compact QD–DNA conjugates, target readout strategies and sensing performance, and concludes with challenges and outlook for the QD–NA/aptamer bioconjugate sensors.


2017 ◽  
Author(s):  
Ling Ling Sun ◽  
Yi Fu ◽  
Willie Ng ◽  
Donna, Xiaodong zhou ◽  
Menghan Kuok

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


2021 ◽  
Author(s):  
Ritika Gupta ◽  
Sunaina Kaul ◽  
Vishal Singh ◽  
Sandeep Kumar ◽  
Nitin Kumar Singhal

Abstract For maintaining the healthy metabolic status, vitamin D is a beneficial metabolite stored majorly in its pre-activated form, 25-hydroxyvitamin D3 (25(OH)D3). Due to its important role in bone strengthening, the study was planned to quantify 25(OH)D3 levels in our blood. Quantification techniques for 25(OH)D3 are costly thus requiring a need for a low cost, and sensitive detection methods. In this work, an economic, and sensitive sensor for the detection of 25(OH)D3 was developed using aptamer and graphene oxide (GO). Aptamer is an oligonucleotide, sensitive towards its target, whereas, GO with 2D nanosheets provides excellent quenching surface. Aptamer labeled with fluorescein (5’, 6-FAM) is adsorbed by π -π interaction on the GO sheets leading to quenching of the fluorescence due to Förster resonance energy transfer (FRET). However, in the presence of 25(OH)D3, a major portion of aptamer fluorescence remains unaltered, due to its association with 25(OH)D3. However, in the absence, aptamer fluorescence gets fully quenched. Fluorescence intensity quenching was monitored using fluorescence spectrophotometer and agarose gel based system. The limit of detection of 25(OH)D3 by this method was found to be 0.15 µg/mL. Therefore, this method could come up as a new sensing method in the field of vitamin D detection.


2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Liting Yi ◽  
Jingjing Li ◽  
Cangran Guo ◽  
Lei Li ◽  
Jing Liu

Pervasive detection of blood glucose is rather critical for the real-time disease diagnosis which would provide valuable guidance for treatment planning. Here, we established a health care platform for this purpose through incorporating the glucose detection with liquid metal printed sensor and the smart phone monitoring system together. The liquid metal ink composed of bismuth indium stannic (BIS) alloy was identified as an appropriate sensor material to be quickly written or printed on polyvinyl chloride (PVC) substrate at around 59 °C to form desired electrodes. It thus eliminated the complicated procedures as usually required in conventional sensor fabrication strategies. The alloy electrodes were characterized via cyclic voltammetry to demonstrate their practical functionality. Further, unlike using the commonly adopted glucometer, a smart phone was developed as the data acquisition and display center to help improve the portability and ubiquitous virtue of the detection system. Glucose solution in different concentrations was assayed via this platform. It was shown that there is a good linear relationship between the concentration and the integral value of the curve recorded by the mobile phone, which confirms the feasibility of the present method. This quantitative point-of-care system has pervasive feature and is expected to be very useful for future low-cost electrochemical detection.


Micromachines ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Gorkem Memisoglu ◽  
Burhan Gulbahar ◽  
Joseba Zubia ◽  
Joel Villatoro

Förster resonance energy transfer (FRET) between two molecules in nanoscale distances is utilized in significant number of applications including biological and chemical applications, monitoring cellular activities, sensors, wireless communications and recently in nanoscale microfluidic radar design denoted by the vibrating FRET (VFRET) exploiting hybrid resonating graphene membrane and FRET design. In this article, a low hardware complexity and novel microfluidic viscosity monitoring system architecture is presented by exploiting VFRET in a novel microfluidic system design. The donor molecules in a microfluidic channel are acoustically vibrated resulting in VFRET in the case of nearby acceptor molecules detected with their periodic optical emission signals. VFRET does not require complicated hardware by directly utilizing molecular interactions detected with the conventional photodetectors. The proposed viscosity measurement system design is theoretically modeled and numerically simulated while the experimental challenges are discussed. It promises point-of-care and environmental monitoring applications including viscosity characterization of blood or polluted water.


Sign in / Sign up

Export Citation Format

Share Document