scholarly journals Improving Low-Dispersion Bandwidth of the Silicon Photonic Crystal Waveguides for Ultrafast Integrated Photonics

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 105
Author(s):  
Jinghan Pan ◽  
Meicheng Fu ◽  
Wenjun Yi ◽  
Xiaochun Wang ◽  
Ju Liu ◽  
...  

We design a novel slow-light silicon photonic crystal waveguide which can operate over an extremely wide flat band for ultrafast integrated nonlinear photonics. By conveniently adjusting the radii and positions of the second air-holes rows, a flat slow-light low-dispersion band of 50 nm is achieved numerically. Such a slow-light photonic crystal waveguide with large flat low-dispersion wideband will pave the way for governing the femtosecond pulses in integrated nonlinear photonic platforms based on CMOS technology.

PIERS Online ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 273-278 ◽  
Author(s):  
David J. Moss ◽  
B. Corcoran ◽  
C. Monat ◽  
Christian Grillet ◽  
T. P. White ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


2010 ◽  
Vol 18 (15) ◽  
pp. 15484 ◽  
Author(s):  
James F. McMillan ◽  
Mingbin Yu ◽  
Dim-Lee Kwong ◽  
Chee Wei Wong

2014 ◽  
Vol 926-930 ◽  
pp. 415-418
Author(s):  
Yong Wan ◽  
Yue Guo ◽  
Jing Gao ◽  
Ming Hui Jia

Crescent scatterers possess the properties of anisotropy and multiple degrees of freedom. With plane-wave expansion method (PWE), the slow light effect with high ngand low dispersion can be achieved by optimizing the structure parameters of photonic crystal waveguide with line defect, such as changing the radius of two circles and center distance. Slow light with low dispersion can be obtained by these methods, which implies that choosing suitable scatterers and adjusting their parameters can efficiently achieve slow light with high ng and low dispersion.


2013 ◽  
Vol 31 (19) ◽  
pp. 3188-3194 ◽  
Author(s):  
Jian Tang ◽  
Tao Wang ◽  
Xiaoming Li ◽  
Boyun Wang ◽  
Chuanbo Dong ◽  
...  

2015 ◽  
pp. 1-1 ◽  
Author(s):  
Takuya Tamura ◽  
Keisuke Kondo ◽  
Yosuke Terada ◽  
Yosuke Hinakura ◽  
Norihiro Ishikura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document