scholarly journals Theoretical Study of Tunable Optical Resonators in Periodic and Quasiperiodic One-Dimensional Photonic Structures Incorporating a Nematic Liquid Crystal

Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 150
Author(s):  
Youssef. Trabelsi ◽  
Walid. Belhadj ◽  
Naim. Ben Ali ◽  
Arafa H. Aly

In this work, the transfer matrix method (TMM) is employed to investigate the optical properties of one-dimensional periodic and quasiperiodic photonic crystals containing nematic liquid crystal (NLC) layers. This structure is expressed as (ABC)J(CBA)J and made of alternated layers of isotropic dielectrics SiO2 (A), BGO (B) and nematic liquid crystal (C). The simulation study shows that the proposed ternary configuration exhibits tunable defect mode within the photonic band gap (PBG) that can be manipulated by adjusting the thicknesses of NLC layers in order of the periodic lattice. In addition, the optimized structure permits for strong confinement light giving rise to an optical microcavity. The application of an applied voltage into NLC layers enables improving the sensitivity by guiding the local defect mode. It has been also shown that by applying quasiperiodic inflation according to Rudin Shapiro Sequence (RSS) scheme to main periodic structure, several tunable resonant modes appear within the PBG. The presence of such sharp resonant peaks reflects that the quasiperiodic NLC-based structure behaves like multiple microcavites with strong light-matter coupling.

2003 ◽  
Vol 82 (21) ◽  
pp. 3593-3595 ◽  
Author(s):  
Ryotaro Ozaki ◽  
Tatsunosuke Matsui ◽  
Masanori Ozaki ◽  
Katsumi Yoshino

2002 ◽  
Vol 41 (Part 2, No. 12B) ◽  
pp. L1482-L1484 ◽  
Author(s):  
Ryotaro Ozaki ◽  
Tatsunosuke Matsui ◽  
Masanori Ozaki ◽  
Katsumi Yoshino

2009 ◽  
Vol 156-158 ◽  
pp. 547-554 ◽  
Author(s):  
Ekaterina V. Astrova ◽  
V.A. Tolmachev ◽  
Yulia A. Zharova ◽  
Galya V. Fedulova ◽  
A.V. Baldycheva ◽  
...  

This paper summarises results on the design, fabrication and characterisation of one-dimensional (1D) Photonic Crystals (PCs) for silicon micro-photonics. Anisotropic and photo-electrochemical etching were used to obtain silicon wall arrays with a high aspect ratio. The characteristics of these wet etching techniques, including their advantages and disadvantages are considered. Optical reflection and transmission spectra of the photonic structures fabricated were characterised by Fourier Transform Infra-Red (FTIR) micro-spectroscopy over a wide spectral range of =1.5-14.5m. These measurements reveal that side-wall roughness impacts the optical properties of 1D PCs. Problems associated with Photonic Band-Gap (PBG) tuning in periodic structures infiltrated with nematic liquid crystals are discussed. A design of a composite 1D PC on an SOI platform for electro-tuning is proposed. The structure was fabricated and tuning due to an electro-optical effect with E7 liquid crystal filler was demonstrated.


2003 ◽  
Vol 12 (04) ◽  
pp. 587-597 ◽  
Author(s):  
CHRISTOPHER J. SUMMERS ◽  
CURTIS W. NEFF ◽  
WOUNJHANG PARK

The development of nano-scaled photonic crystal structures has resulted in many new devices exhibiting non-classical optical behavior. Typically, in these structures a photonic band gap and associated defect mode are used to create waveguides, resonators, couplers and filters. In this paper we propose that the functionality of these structures can be significantly enhanced by the infiltration of the photonic crystal with other classes of materials, particularly highly nonlinear liquid crystals and electro-optical materials. The properties of conventional 2D PC slab waveguides were simulated by the finite difference time domain method and shown to exhibit very large refraction and dispersion, and significant tunable effects under bias when infiltrated with liquid crystal. In particular, a new superlattice photonic crystal concept is proposed and shown to exhibit up to ~50° tunability in the angle of refraction when alternate liquid crystal infiltrated pixel rows were modulated from their aligned to unaligned state. This modulation corresponds to index changes from 1.5 to 2.1; it is assumed that a refractive index change of up to approximately Δn=0.6 can be achieved. The superlattice effect was also demonstrated to induce new switching and out-coupling effects that were strongly dependent on the direction of propagation and index modulation. These simulations demonstrate the potential of a new class of optically-active photonic crystal architectures to tune giant refraction and dispersion characteristics and to enable new switching phenomena.


Sign in / Sign up

Export Citation Format

Share Document