scholarly journals A QoS-Aware Dynamic Bandwidth Allocation Algorithm for Passive Optical Networks with Non-Zero Laser Tuning Time

Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 159
Author(s):  
Mohammad Zehri ◽  
Adebanjo Haastrup ◽  
David Rincón ◽  
José Ramón Piney ◽  
Sebastià Sallent ◽  
...  

The deployment of new 5G services and future demands for 6G make it necessary to increase the performance of access networks. This challenge has prompted the development of new standardization proposals for Passive Optical access Networks (PONs) that offer greater bandwidth, greater reach and a higher rate of aggregation of users per fiber, being Time- and Wavelength-Division Multiplexing (TWDM) a promising technological solution for increasing the capacity by up to 40 Gbps by using several wavelengths. This solution introduces tunable transceivers into the Optical Network Units (ONUs) for switching from one wavelength to the other, thus addressing the ever-increasing bandwidth demands in residential broadband and mobile fronthaul networks based on Fiber to the Home (FTTH) technology. This adds complexity and sources of inefficiency, such as the laser tuning time (LTT) delay, which is often ignored when evaluating the performance of Dynamic Bandwidth Allocation (DBA) mechanisms. We present a novel DBA algorithm that dynamically handles the allocation of bandwidth and switches the ONUs’ lasers from one wavelength to the other while taking LTT into consideration. To optimize the packet delay, we introduce a scheduling mechanism that follows the Longest Processing Time first (LPT) scheduling discipline, which is implemented over the Interleaved Polling with Adaptive Cycle Time (IPACT) DBA. We also provide quality of service (QoS) differentiation by introducing the Max-Min Weighted Fair Share Queuing principle (WFQ) into the algorithm. The performance of our algorithm is evaluated through simulations against the original IPACT algorithm, which we have extended to support multi-wavelengths. With the introduction of LPT, we obtain an improved performance of up to 73% reduction in queue delay over IPACT while achieving QoS differentiation with WFQ.

Author(s):  
Mohammad Zehri ◽  
Adebanjo Haastrup ◽  
David Rincon ◽  
José Ramón Piney ◽  
Sebastià Sallent ◽  
...  

Time- and Wavelength-Division Multiplexing (TWDM) increases the capacity of Passive Optical Networks by up to 40 Gbps by using several wavelengths (typically four). It introduces tunable transceivers into the Optical Network Units (ONUs) for switching from one wavelength to the other, thus addressing the ever-increasing bandwidth demands in residential broadband and mobile fronthaul networks based on Fiber to the Home (FTTH) technology. This adds complexity and sources of inefficiency, such as the laser tuning time (LTT) delay, which is often ignored when evaluating the performance of Dynamic Bandwidth Allocation (DBA) mechanisms. We present a novel DBA algorithm that dynamically handles the allocation of bandwidth and switches the ONUs’ laser from one wavelength to the other while taking LTT into consideration. To optimize the packet delay, we introduce a scheduling mechanism that follows the Longest Processing Time first (LPT) scheduling discipline, which is implemented over the Interleaved Polling with Adaptive Cycle Time (IPACT) DBA. We also provide quality of service (QoS) differentiation by introducing the Max-Min Weighted Fair Share Queuing principle (WFQ) into the algorithm. The performance of our algorithm is evaluated through simulations against the original IPACT algorithm, which we have extended to support multi-wavelengths. We obtain an improved performance of up to 73% and 33% reduction in queue delay in, respectively, IPACT and WFQ.


Author(s):  
Noemí Merayo ◽  
Patricia Fernández ◽  
Ramón J. Durán ◽  
Rubén M. Lorenzo ◽  
Ignacio de Miguel ◽  
...  

Passive Optical Networks (PONs) are very suitable architectures to face today’s access challenges. This technology shows a very cost saving architecture, it provides a huge amount of bandwidth and efficiently supports Quality of Service (QoS). In PON networks, as all subscribers share the same uplink channel, a medium access control protocol is required to provide a contention method to access the channel. As the performance of Time Division Multiplexing Access (TDMA) protocol is not good enough because traffic nature is heterogeneous, Dynamic Bandwidth Allocation (DBA) algorithms are proposed to overcome the problem. These algorithms are very efficient as they adapt the bandwidth assignment depending on the updated requirements and traffic conditions. Moreover, they should offer QoS by means of both class of service and subscriber differentiation. Long-Reach PONs, which combine the access and the metro network into only one by using 100 km of fibre, is an emergent technology able to reach a large number of far subscribers and to decrease the associated costs.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ankur Singhal ◽  
Amit Gupta ◽  
Surbhi Bakshi

AbstractBandwidth assignment is a key issue in optical access networks, so an efficient mechanism is required for dynamic distribution of limited resources in the uplink channel among competing subscriber optical network units (ONUs). This paper presents a novel optimized dynamic bandwidth allocation (ODBA) algorithm for hybrid WDM/TDM passive optical networks. ODBA algorithm operates using information frame length of the subscriber’s ONUs and their information arrival rate; both of these factors finalize the assigned transmission capacity to the users. The system performance under differing offered traffic loads is evaluated in terms of network throughput, average delay and channel utilization. Further, the proposed ODBA scheme is validated by performing a comparative analysis with well-known algorithms.


2020 ◽  
Vol 12 (6) ◽  
pp. 2264 ◽  
Author(s):  
Hamzeh Khalili ◽  
David Rincón ◽  
Sebastià Sallent ◽  
José Ramón Piney

The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.


Sign in / Sign up

Export Citation Format

Share Document