scholarly journals Changes in Spectral Fluorescence Properties of a Near-Infrared Photosensitizer in a Nanoform as a Coating of an Optical Fiber Neuroport

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 556
Author(s):  
Yuliya Maklygina ◽  
Igor Romanishkin ◽  
Aleksej Skobeltsin ◽  
Dina Farrakhova ◽  
Sergej Kharnas ◽  
...  

In this work, we tested a new approach to assess the presence of inflammatory process in the implant area using spectral methods and the technique of fiber fluorescence analysis of photosensitizers in nanoform. First of all, the spectral characteristics of the photosensitizer when interacting with the porous surface of the implant, based on hydroxyapatite under in vitro and in vivo conditions, were determined. Thus, it was shown that spectral characteristics of photosensitizers can be used for judgement on the process of inflammation in the implant area and thus on the local presence of the immunocompetent cells. The analysis was performed at a sufficient depth in the biotissue by using the near-infrared spectral region, as well as two different methods: fiber-based laser spectroscopy and fiber-optic neuroscopy, which served to monitor the process and regular fluorescence diagnosis of the studied area. Fluorescence spectroscopic analysis was performed on experimental animals in vivo, i.e., under conditions of active immune system intervention, as well as on cell cultures in vitro in order to judge the role of the immune system in the interaction with the implant in comparison. Thus, the aim of the study was to determine the relationship between the fluorescence signal of nanophotosensitizers in the near infrared spectral region and its parameters with the level of inflammation and the type of surface with which the photosensitizer interacts in the implant area. Thus, fiber-optic control opens up new approaches for further diagnosis and therapy in the implant area, making immune cells a prime target for advanced therapies.

1995 ◽  
Vol 49 (5) ◽  
pp. 547-555 ◽  
Author(s):  
David A. Landis ◽  
Carl J. Seliskar

Multimode optical fiber-graded index (GRIN) lens couples are modeled with the use of an algorithm which quantitatively traces light paths through the optical elements. The effects of the variation of optical fiber core size, GRIN lens length (pitch), fiber-optic/GRIN lens separation, and wavelength are quantitatively demonstrated. Chromatic effects specific to™ GRIN lens couples are evaluated for the near-UV to near-infrared spectral region. In general, GRIN lens couples are found to be superior to equivalent ball lens couples for spectroscopic applications. A simple example application of the multimode fiber-optic/GRIN lens couple in remote chemical spectroscopy is presented.


1999 ◽  
Vol 226 (1-2) ◽  
pp. 119-128 ◽  
Author(s):  
M.I Daneshvar ◽  
J.M Peralta ◽  
G.A Casay ◽  
N Narayanan ◽  
Lawrence Evans ◽  
...  

2006 ◽  
Vol 60 (11) ◽  
pp. 1241-1246 ◽  
Author(s):  
Jean-Francois Masson ◽  
Yoon-Chang Kim ◽  
Louis A. Obando ◽  
Wei Peng ◽  
Arl S. Booksh

2019 ◽  
Vol 28 (7) ◽  
pp. 9-16
Author(s):  
Shich-Chuan Wu ◽  
Yu-Lin Yang ◽  
Wen-Hsien Huang ◽  
Yang-Tung Huang

2000 ◽  
Vol 54 (3) ◽  
pp. 450-455 ◽  
Author(s):  
Stephen R. Lowry ◽  
Jim Hyatt ◽  
William J. McCarthy

A major concern with the use of near-infrared (NIR) spectroscopy in many QA/QC laboratories is the need for a simple reliable method of verifying the wavelength accuracy of the instrument. This requirement is particularly important in near-infrared spectroscopy because of the heavy reliance on sophisticated statistical vector analysis techniques to extract the desired information from the spectra. These techniques require precise alignment of the data points between the vectors corresponding to the standard and sample spectra. The National Institute of Standards and Technology (NIST) offers a Standard Reference Material (SRM 1921) for the verification and calibration of mid-infrared spectrometers in the transmittance mode. This standard consists of a 38 μm-thick film of polystyrene plastic. While SRM 1921 works well as a mid-infrared standard, a thicker sample is required for use as a routine standard in the near-infrared spectral region. The general acceptance and proven reliability of polystyrene as a standard reference material make it a very good candidate for a cost-effective NIR standard that could be offered as an internal reference for every instrument. In this paper we discuss a number of the parameters in a Fourier transform (FT)-NIR instrument that can affect wavelength accuracy. We also report a number of experiments designed to determine the effects of resolution, sample position, and optics on the wavelength accuracy of the system. In almost all cases the spectral reproducibility was better than one wavenumber of the values extrapolated from the NIST reference material. This finding suggests that a thicker sample of polystyrene plastic that has been validated with the SRM 1921 standard would make a cost-effective reference material for verifying wavelength accuracy in a medium-resolution FT-NIR spectrometer.


Sign in / Sign up

Export Citation Format

Share Document