scholarly journals Integral Balance Methods for Stokes’ First Equation Described by the Left Generalized Fractional Derivative

Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 154-166 ◽  
Author(s):  
Ndolane Sene

In this paper, the integral balance methods of the Stokes’ first equation have been presented. The approximate solution of the fractional Stokes’ first equation using the heat balance integral method has been proposed. The approximate solution of the fractional Stokes’ first equation using the double integral methods has been proposed. The generalized fractional time derivative operator has been used. The graphical representations of the cubic profile and the quadratic profile for the Stokes’ first problem have been provided. The impacts of the orders of the generalized fractional derivative in the Stokes’ first problem have been investigated. The exponent of the assumed profile for the Stokes’ first equation has been discussed.

2021 ◽  
Vol 2 (1) ◽  
pp. 60-75
Author(s):  
Ndolane Sene

In this paper, we propose the approximate solution of the fractional diffusion equation described by a non-singular fractional derivative. We use the Atangana-Baleanu-Caputo fractional derivative in our studies. The integral balance methods as the heat balance integral method introduced by Goodman and the double integral method developed by Hristov have been used for getting the approximate solution. In this paper, the existence and uniqueness of the solution of the fractional diffusion equation have been provided. We analyze the impact of the fractional operator in the diffusion process. We represent graphically the approximate solution of the fractional diffusion equation.


2010 ◽  
Vol 14 (2) ◽  
pp. 291-316 ◽  
Author(s):  
Jordan Hristov

The fractional (half-time) sub-model of the heat diffusion equation, known as Dirac-like evolution diffusion equation has been solved by the heat-balance integral method and a parabolic profile with unspecified exponent. The fractional heat-balance integral method has been tested with two classic examples: fixed temperature and fixed flux at the boundary. The heat-balance technique allows easily the convolution integral of the fractional half-time derivative to be solved as a convolution of the time-independent approximating function. The fractional sub-model provides an artificial boundary condition at the boundary that closes the set of the equations required to express all parameters of the approximating profile as function of the thermal layer depth. This allows the exponent of the parabolic profile to be defined by a straightforward manner. The elegant solution performed by the fractional heat-balance integral method has been analyzed and the main efforts have been oriented towards the evaluation of fractional (half-time) derivatives by use of approximate profile across the penetration layer.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Rami El-Nabulsi

AbstractThe purpose of this paper is to extend the fractional actionlike variational approach by introducing a generalized fractional derivative operator. The generalized fractional formalism introduced through this work includes some interesting features concerning the fractional Euler-Lagrange and Hamilton equations. Additional attractive features are explored in some details.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Majid Bagheri ◽  
Ali Khani

The present work is related to solving the fractional generalized Korteweg-de Vries (gKdV) equation in fractional time derivative form of order α . Some exact solutions of the fractional-order gKdV equation are attained by employing the new powerful expansion approach by using the beta-fractional derivative which is used to get many solitary wave solutions by changing various parameters. The obtained solutions include three classes of soliton wave solutions in terms of hyperbolic function, trigonometric function, and rational function solutions. The obtained solutions and the exact solutions are shown graphically, highlighting the effects of nonlinearity. Some of the nonlinear equations arise in fluid dynamics and nonlinear phenomena.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Salih Djilali ◽  
Behzad Ghanbari

AbstractThe behavior of any complex dynamic system is a natural result of the interaction between the components of that system. Important examples of these systems are biological models that describe the characteristics of complex interactions between certain organisms in a biological environment. The study of these systems requires the use of precise and advanced computational methods in mathematics. In this paper, we discuss a prey–predator interaction model that includes two competitive predators and one prey with a generalized interaction functional. The primary presumption in the model construction is the competition between two predators on the only prey, which gives a strong implication of the real-world situation. We successfully establish the existence and stability of the equilibria. Further, we investigate the impact of the memory measured by fractional time derivative on the temporal behavior. We test the obtained mathematical results numerically by a proper numerical scheme built using the Caputo fractional-derivative operator and the trapezoidal product-integration rule.


Sign in / Sign up

Export Citation Format

Share Document