scholarly journals Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution

2021 ◽  
Vol 2 (1) ◽  
pp. 60-75
Author(s):  
Ndolane Sene

In this paper, we propose the approximate solution of the fractional diffusion equation described by a non-singular fractional derivative. We use the Atangana-Baleanu-Caputo fractional derivative in our studies. The integral balance methods as the heat balance integral method introduced by Goodman and the double integral method developed by Hristov have been used for getting the approximate solution. In this paper, the existence and uniqueness of the solution of the fractional diffusion equation have been provided. We analyze the impact of the fractional operator in the diffusion process. We represent graphically the approximate solution of the fractional diffusion equation.

2013 ◽  
Vol 10 (02) ◽  
pp. 1341001 ◽  
Author(s):  
LEEVAN LING ◽  
MASAHIRO YAMAMOTO

We consider the solutions of a space–time fractional diffusion equation on the interval [-1, 1]. The equation is obtained from the standard diffusion equation by replacing the second-order space derivative by a Riemann–Liouville fractional derivative of order between one and two, and the first-order time derivative by a Caputo fractional derivative of order between zero and one. As the fundamental solution of this fractional equation is unknown (if exists), an eigenfunction approach is applied to obtain approximate fundamental solutions which are then used to solve the space–time fractional diffusion equation with initial and boundary values. Numerical results are presented to demonstrate the effectiveness of the proposed method in long time simulations.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 695-699 ◽  
Author(s):  
Sheng-Ping Yan ◽  
Wei-Ping Zhong ◽  
Xiao-Jun Yang

In this paper, we suggest the series expansion method for finding the series solution for the time-fractional diffusion equation involving Caputo fractional derivative.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Y. J. Choi ◽  
S. K. Chung

We consider finite element Galerkin solutions for the space fractional diffusion equation with a nonlinear source term. Existence, stability, and order of convergence of approximate solutions for the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete scheme. The analytical convergent orders are obtained asO(k+hγ˜), whereγ˜is a constant depending on the order of fractional derivative. Numerical computations are presented, which confirm the theoretical results when the equation has a linear source term. When the equation has a nonlinear source term, numerical results show that the diffusivity depends on the order of fractional derivative as we expect.


Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 154-166 ◽  
Author(s):  
Ndolane Sene

In this paper, the integral balance methods of the Stokes’ first equation have been presented. The approximate solution of the fractional Stokes’ first equation using the heat balance integral method has been proposed. The approximate solution of the fractional Stokes’ first equation using the double integral methods has been proposed. The generalized fractional time derivative operator has been used. The graphical representations of the cubic profile and the quadratic profile for the Stokes’ first problem have been provided. The impacts of the orders of the generalized fractional derivative in the Stokes’ first problem have been investigated. The exponent of the assumed profile for the Stokes’ first equation has been discussed.


2015 ◽  
Vol 93 (1) ◽  
pp. 18-36 ◽  
Author(s):  
Nadeem A. Malik ◽  
R.A. Ghanam ◽  
S. Al-Homidan

In reservoir engineering, an oil reservoir is commonly modeled using Darcy’s diffusion equation for a porous medium. In this work we propose a fractional diffusion equation to model the pressure distribution, p(x, t), of fluid in a horizontal one-dimensional homogeneous porous reservoir of finite length, L, and uniform thickness. A chief concern in this work is to examine the sensitivity of the pressure distribution, p(x, t), to different forms of pseudo-diffusivity, K, including cases when it depends upon the order of the fractional derivative (α), 0 ≤ α < 1 (e.g., K ∝ (1 – α)), which may be more realistic for some types of rock formations. In all cases the systems show a near-linear increase in the pressure difference P(x, t) = (p(x, t) – pi)/pi in the reservoir for large times, where pi = p(x, t = 0). For x/L < 0.4, the rate of increase of P with time increases with α, but there is a crossover at x/L = 0.4 and this trend reverses for x/L > 0.4. When K = 10k (k is the conventional permeability when α = 0), the solutions are almost independent of α, and when K = 0.1k the rate of increase in P depends upon α. This effect is enhanced when K = (1 – α)k; furthermore, in this case towards the closed end of the reservoir the pressure distribution remains practically undisturbed as α → 1. These results show that the pressure distribution in a porous reservoir is very sensitive to the dependence of the pseudo-diffusivity on the order of the fractional derivative, α.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Karel Van Bockstal

AbstractIn this contribution, we investigate an initial-boundary value problem for a fractional diffusion equation with Caputo fractional derivative of space-dependent variable order where the coefficients are dependent on spatial and time variables. We consider a bounded Lipschitz domain and a homogeneous Dirichlet boundary condition. Variable-order fractional differential operators originate in anomalous diffusion modelling. Using the strongly positive definiteness of the governing kernel, we establish the existence of a unique weak solution in $u\in \operatorname{L}^{\infty } ((0,T),\operatorname{H}^{1}_{0}( \Omega ) )$ u ∈ L ∞ ( ( 0 , T ) , H 0 1 ( Ω ) ) to the problem if the initial data belongs to $\operatorname{H}^{1}_{0}(\Omega )$ H 0 1 ( Ω ) . We show that the solution belongs to $\operatorname{C} ([0,T],{\operatorname{H}^{1}_{0}(\Omega )}^{*} )$ C ( [ 0 , T ] , H 0 1 ( Ω ) ∗ ) in the case of a Caputo fractional derivative of constant order. We generalise a fundamental identity for integro-differential operators of the form $\frac{\mathrm{d}}{\mathrm{d}t} (k\ast v)(t)$ d d t ( k ∗ v ) ( t ) to a convolution kernel that is also space-dependent and employ this result when searching for more regular solutions. We also discuss the situation that the domain consists of separated subdomains.


2021 ◽  
Vol 5 (4) ◽  
pp. 236
Author(s):  
Manuel Duarte Ortigueira

A new look at the fractional diffusion equation was done. Using the unified fractional derivative, a new formulation was proposed, and the equation was solved for three different order cases: neutral, dominant time, and dominant space. The solutions were expressed by generalizations of classic formulae used for the stable distributions. The entropy paradox problem was studied and clarified through the Rényi entropy: in the extreme wave regime the entropy is −∞. In passing, Tsallis and Rényi entropies for stable distributions are introduced and exemplified.


Sign in / Sign up

Export Citation Format

Share Document