scholarly journals Characterization of 15-cis-ζ-Carotene Isomerase Z-ISO in Cultivated and Wild Tomato Species Differing in Ripe Fruit Pigmentation

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2365
Author(s):  
Gleb I. Efremov ◽  
Anna V. Shchennikova ◽  
Elena Z. Kochieva

Isomerization of 9,15,9′-tri-cis-ζ-carotene mediated by 15-cis-ζ-carotene isomerase Z-ISO is a critical step in the biosynthesis of carotenoids, which define fruit color. The tomato clade (Solanum section Lycopersicon) comprises the cultivated tomato (Solanum lycopersicum) and 12 related wild species differing in fruit color and, thus, represents a good model for studying carotenogenesis in fleshy fruit. In this study, we identified homologous Z-ISO genes, including 5′-UTRs and promoter regions, in 12 S. lycopersicum cultivars and 5 wild tomato species (red-fruited Solanum pimpinellifolium, yellow-fruited Solanum cheesmaniae, and green-fruited Solanum chilense, Solanum habrochaites, and Solanum pennellii). Z-ISO homologs had a highly conserved structure, suggesting that Z-ISO performs a similar function in tomato species despite the difference in their fruit color. Z-ISO transcription levels positively correlated with the carotenoid content in ripe fruit of the tomatoes. An analysis of the Z-ISO promoter and 5′-UTR sequences revealed over 130 cis-regulatory elements involved in response to light, stresses, and hormones, and in the binding of transcription factors. Green- and red/yellow-fruited Solanum species differed in the number and position of cis-elements, indicating changes in the transcriptional regulation of Z-ISO expression during tomato evolution, which likely contribute to the difference in fruit color.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1169
Author(s):  
Gleb I. Efremov ◽  
Maria A. Slugina ◽  
Anna V. Shchennikova ◽  
Elena Z. Kochieva

In plants, carotenoids define fruit pigmentation and are involved in the processes of photo-oxidative stress defense and phytohormone production; a key enzyme responsible for carotene synthesis in fruit is phytoene synthase 1 (PSY1). Tomatoes (Solanum section Lycopersicon) comprise cultivated (Solanum lycopersicum) as well as wild species with different fruit color and are a good model to study carotenogenesis in fleshy fruit. In this study, we identified homologous PSY1 genes in five Solanum section Lycopersicon species, including domesticated red-fruited S. lycopersicum and wild yellow-fruited S. cheesmaniae and green-fruited S. chilense, S. habrochaites and S. pennellii. PSY1 homologs had a highly conserved structure, including key motifs in the active and catalytic sites, suggesting that PSY1 enzymatic function is similar in green-fruited wild tomato species and preserved in red-fruited S. lycopersicum. PSY1 mRNA expression directly correlated with carotenoid content in ripe fruit of the analyzed tomato species, indicating differential transcriptional regulation. Analysis of the PSY1 promoter and 5′-UTR sequence revealed over 30 regulatory elements involved in response to light, abiotic stresses, plant hormones, and parasites, suggesting that the regulation of PSY1 expression may affect the processes of fruit senescence, seed maturation and dormancy, and pathogen resistance. The revealed differences between green-fruited and red-fruited Solanum species in the structure of the PSY1 promoter/5′-UTR, such as the acquisition of ethylene-responsive element by S. lycopersicum, could reflect the effects of domestication on the transcriptional mechanisms regulating PSY1 expression, including induction of carotenogenesis during fruit ripening, which would contribute to red coloration in mature fruit.


2014 ◽  
Vol 46 (9) ◽  
pp. 1034-1038 ◽  
Author(s):  
Anthony Bolger ◽  
Federico Scossa ◽  
Marie E Bolger ◽  
Christa Lanz ◽  
Florian Maumus ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carlos A. Avila ◽  
Thiago G. Marconi ◽  
Zenaida Viloria ◽  
Julianna Kurpis ◽  
Sonia Y. Del Rio

Abstract The tomato-potato psyllid (TPP), Bactericera cockerelli, is a vector for the phloem-limited bacterium Candidatus Liberibacter solanacearum (Lso), the causative agent of economically important diseases including tomato vein-greening and potato zebra chip. Here, we screened 11 wild tomato relatives for TPP resistance as potential resources for tomato (Solanum lycopersicum) cultivar development. Six accessions with strong TPP resistance (survival <10%) were identified within S. habrochaites, S. pennelli, S. huaylasense, S. chmielewskii, S. corneliomulleri, and S. galapagense. Two S. pennelli and S. corneliomulleri accessions also showed resistance to Lso. We evaluated recombinant inbred lines (RILs) carrying resistance from S. habrochaites accession LA1777 in the S. lycopersicum background and identified major quantitative trait loci (QTLs) responsible for adult TPP mortality and fecundity in several RILs carrying insertions in different chromosomes, indicating the polygenic nature of these traits. Analysis of a major resistance QTL in RIL LA3952 on chromosome 8 revealed that the presence of Lso is required to increase adult TPP mortality. By contrast, the reduced TPP oviposition trait in LA3952 is independent of Lso. Therefore, resistance traits are available in wild-tomato species, although their complex inheritance and modes of action require further characterisation to optimise their utilisation for tomato improvement.


2018 ◽  
Vol 5 (4) ◽  
pp. 174
Author(s):  
Asma Akbar ◽  
Shaukat Hussain ◽  
Gul Shad Ali

Fusarium wilt caused by different Fusarium species is a devastating disease causes heavy loss to tomato plantation worldwide. In this study 13 tomato varieties were screened against F. equiseti to explore the resistance potential of the varieties against the disease. Out of 13 varieties only 2 varieties Roma and Hybrid showed resistance to the disease, while the other 69% were highly susceptible. Based on cluster analysis for genetic diversity it was reported that susceptible varieties are only 8% genetically different and share same genetic pool. We reported that the wild species of tomato Solanum pimpinellifolium (Sp- 2093) showed complete immunity and were remain unaffected having 25% genetic difference with other varieties tested. Thus wild tomato species may provide the source of resistance required to develop resistant variety against the emerging wilt pathogen F. equiseti. The data regarding virluence structure and resisatnt variety that is presented in this study will suport more focused efforts in the management of tomato wilt caused by Fusarium species and that resistant features of wild tomato variety Sp-2093, could be accumulated with other desirable characteristics of different germplasm in one cultivar, which will reduce the chances for new virulent species to evolve.


Sign in / Sign up

Export Citation Format

Share Document