scholarly journals Arabidopsis Growth-Promotion and Root Architecture Responses to the Beneficial Rhizobacterium Phyllobacterium brassicacearum Strain STM196 Are Independent of the Nitrate Assimilatory Pathway

Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Maya Kechid ◽  
Guilhem Desbrosses ◽  
Lydia Gamet ◽  
Loren Castaings ◽  
Fabrice Varoquaux ◽  
...  

Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacterium isolated from roots of oilseed rape, stimulates Arabidopsis growth. We have previously shown that the NRT2.5 and NRT2.6 genes are required for this growth promotion response. Since these genes are members of the NRT2 family of nitrate transporters, the nitrogen assimilatory pathway could be involved in growth promotion by STM196. We address this hypothesis using two nitrate reductase mutants, G5 deleted in the major nitrate reductase gene NIA2 and G′4-3 altered in both NIA1 and NIA2 genes. Both mutants had a reduced growth rate and STM196 failed to increase their biomass production on a medium containing NO3− as the sole nitrogen source. However, they both displayed similar growth promotion by STM196 when grown on an NH4+ medium. STM196 was able to stimulate lateral roots development of the mutants under both nutrition conditions. Altogether, our results indicate that the nitrate assimilatory metabolism is not a primary target of STM196 interaction and is not involved in the root developmental response. The NIA1 transcript level was reduced in the shoots of nrt2.5 and nrt2.6 mutants suggesting a role for this nitrate reductase isoform independently from its role in nitrate assimilation.

2000 ◽  
Vol 182 (12) ◽  
pp. 3368-3376 ◽  
Author(s):  
Leo Eberl ◽  
Aldo Ammendola ◽  
Michael H. Rothballer ◽  
Michael Givskov ◽  
Claus Sternberg ◽  
...  

ABSTRACT By using mini-Tn5 transposon mutagenesis, random transcriptional fusions of promoterless bacterial luciferase,luxAB, to genes of Pseudomonas putida KT2442 were generated. Insertion mutants that responded to ammonium deficiency by induction of bioluminescence were selected. The mutant that responded most strongly was genetically analyzed and is demonstrated to bear the transposon within the assimilatory nitrate reductase gene (nasB) of P. putida KT2442. Genetic evidence as well as sequence analyses of the DNA regions flanking nasBsuggest that the genes required for nitrate assimilation are not clustered. We isolated three second-site mutants in which induction ofnasB expression was completely abolished under nitrogen-limiting conditions. Nucleotide sequence analysis of the chromosomal junctions revealed that in all three mutants the secondary transposon had inserted at different sites in the gltB gene of P. putida KT2442 encoding the major subunit of the glutamate synthase. A detailed physiological characterization of thegltB mutants revealed that they are unable to utilize a number of potential nitrogen sources, are defective in the ability to express nitrogen starvation proteins, display an aberrant cell morphology under nitrogen-limiting conditions, and are impaired in the capacity to survive prolonged nitrogen starvation periods.


Gene ◽  
1984 ◽  
Vol 31 (1-3) ◽  
pp. 109-116 ◽  
Author(s):  
C.J. Kuhlemeier ◽  
V.J.P. Teeuwsen ◽  
M.J.T. Janssen ◽  
G.A. van Arkel

2003 ◽  
Vol 269 (6) ◽  
pp. 807-816 ◽  
Author(s):  
M. Guescini ◽  
R. Pierleoni ◽  
F. Palma ◽  
S. Zeppa ◽  
L. Vallorani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document