Anthocyanin Accumulation
Recently Published Documents


TOTAL DOCUMENTS

559
(FIVE YEARS 323)

H-INDEX

49
(FIVE YEARS 21)

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Qian Lou ◽  
Hongli Liu ◽  
Wen Luo ◽  
Kaili Chen ◽  
Yali Liu

Abstract Background Grape hyacinth (Muscari spp.) is one of the most important ornamental bulbous plants. However, its lengthy juvenile period and time-consuming transformation approaches under the available protocols impedes the functional characterisation of its genes in flower tissues. In vitro flower organogenesis has long been used to hasten the breeding cycle of plants but has not been exploited for shortening the period of gene transformation and characterisation in flowers. Results A petal regeneration system was established for stable transformation and function identification of colour gene in grape hyacinth. By culturing on Murashige and Skoog medium (MS) with 0.45 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 8.88 μM 6-benzyladenine (6-BA), during the colour-changing period, the flower bud explants gave rise to regeneration petals in less than 3 months, instead of the 3 years required in field-grown plants. By combining this system with Agrobacterium-mediated transformation, a glucuronidase reporter gene (GUS) was delivered into grape hyacinth petals. Ultimately, 214 transgenic petals were regenerated from 24 resistant explants. PCR and GUS quantitative analyses confirmed that these putative transgenic petals have stably overexpressed GUS genes. Furthermore, an RNAi vector of the anthocyanidin 3-O-glucosyltransferase gene (MaGT) was integrated into grape hyacinth petals using the same strategy. Compared with the non-transgenic controls, reduced expression of the MaGT occurred in all transgenic petals, which caused pigmentation loss by repressing anthocyanin accumulation. Conclusion The Agrobacterium transformation method via petal organogenesis of grape hyacinth took only 3–4 months to implement, and was faster and easier to perform than other gene-overexpressing or -silencing techniques that are currently available.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2180
Author(s):  
Yanjie Zhang ◽  
Tianjiao Zhang ◽  
Qing Zhao ◽  
Xiaodong Xie ◽  
Yan Li ◽  
...  

Color is an essential agronomic trait and the consumption of high anthocyanin containing vegetables in daily diet does provide benefits to human health, but the mechanisms on anthocyanin accumulation in tender pods of okra (Abelmoschus esculentus L.) were totally unknown. In this study, a wide characterization and quantitation of anthocyanins and flavonols in tender pods of 15 okra varieties were performed by UHPLC-Q-Orbitrap HRMS for the first time. Two major anthocyanins (delphinidin 3-O-sambubioside and cyanidin 3-O-sambubioside) and six kinds of flavonol glycosides (most are quercetin-based) were identified and quantified. The coloration of the purple okra pod mainly arises from the accumulation of both delphinidin 3-O-sambubioside and cyanidin 3-O-sambubioside in most of purple varieties (Hong Yu, Bowling Red and Burgundy), except Jing Orange. The significant differences in the compositions and contents of anthocyanins are responsible for the pod color ranging from brick-red to purplish-red among the various okra cultivars. Furthermore, four representative okra cultivars exhibiting obvious differences in anthocyanin accumulation were further analyzed with transcriptome and more than 4000 conserved differentially expressed genes were identified across the three compared groups (B vs. BR, B vs. HY and B vs. JO). Based on the comprehensive analysis of transcriptomic data, it was indicated that MBW complex consisting of AeMYB114, AeTT8, and AeTTG1 and other transcriptional factors coordinately regulate the accumulation of anthocyanins via the transcriptional regulation of structural genes. Moreover, four independent working models explaining the diversities of anthocyanin pigmentation in okra pods were also proposed. Altogether, these results improved our understanding on anthocyanin accumulation in okra pods, and provided strong supports for the development of okra pod as a functional food in the future.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlan Piao ◽  
Jinguo Wu ◽  
Min-Long Cui

AbstractAnthocyanins are the largest group of water-soluble pigments and beneficial for human health. Although most plants roots have the potential to express natural biosynthesis pathways required to produce specialized metabolites such as anthocyanins, the anthocyanin synthesis is specifically silenced in roots. To explore the molecular mechanism of absence and production ability of anthocyanin in the roots, investigated the effect of a bHLH gene AmDelila, and an R2R3-MYB gene AmRosea1, which are the master regulators of anthocyanin biosynthesis in Antirrhinum majus flowers, by expressing these genes in transformed hairy roots of A. majus. Co-ectopic expression of both AmDelila and AmRosea1 significantly upregulated the expression of the key target structural genes in the anthocyanin biosynthesis pathway. Furthermore, this resulted in strongly enhanced anthocyanin accumulation in transformed hairy roots. Ectopic expression of AmDelila alone did not gives rise to any significant anthocyanin accumulation, however, ectopic expression of AmRosea1 alone clearly upregulated expression of the main structural genes as well as greatly promoted anthocyanin accumulation in transformed hairy roots, where the contents reached 0.773–2.064 mg/g fresh weight. These results suggest that AmRosea1 plays a key role in the regulatory network in controlling the initiation of anthocyanin biosynthesis in roots, and the combination of AmRosea1 and hairy root culture is a powerful tool to study and production of anthocyanins in the roots of A. majus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaonan Dong ◽  
Chaorui Liu ◽  
Yuqi Wang ◽  
Qing Dong ◽  
Yingping Gai ◽  
...  

To understand the mechanism of small non-coding RNAs (miRNA)-mediated development and ripening of mulberry fruits, three small RNA libraries from mulberry fruits at different development stages were constructed, and 159 conserved miRNAs as well as 86 novel miRNAs were successfully identified. Among the miRNAs identified, there were 90 miRNAs which showed differential expression patterns at different stages of fruit development and ripening. The target genes of these differential expressed (DE) miRNAs were involved in growth and development, transcription and regulation of transcription, metabolic processes, and etc. Interestingly, it was found that the expression level of mul-miR477 was increased with fruit ripening, and it can target the antisense lncRNA (Mul-ABCB19AS) of the ATP binding cassette (ABC) transporter B 19 gene (Mul-ABCB19). Our results showed that mul-miR477 can repress the expression of Mul-ABCB19AS and increase the expression of Mul-ABCB19, and it acted as a positive regulator participating anthocyanin accumulation through the regulatory network of mul-miR477—Mul-ABCB19AS—Mul-ABCB19.


2021 ◽  
Author(s):  
Xiaotong Ji ◽  
Zhuangzhuang Xu ◽  
Meiling Wang ◽  
Xuyang Zhong ◽  
Lingling Zeng ◽  
...  

Herbaceous peony is an important cut-flower plant cultivated across the world, but its short vase life substantially restricts the economic value of this crop. It is well established that endogenous hormones regulate the senescing process, but the molecular mechanism of them in flower senescence is still unclear. Here, we isolated a MYB transcription factor gene PlMYB308 from herbaceous peony flowers. Transcript abundance of PlMYB308 was strongly up-regulated in senescing petals. Silencing of PlMYB308 resulted in delayed peony flower senescence, and dramatically increased gibberellin (GA) but reduced ethylene and abscisic acid (ABA) levels in petals. Ectopic overexpression of PlMYB308 in tobacco accelerated flower senescence, and reduced GA but increased ethylene and ABA accumulation. Correspondingly, biosynthetic genes of ethylene, ABA, and GA showed variable expression levels in petals after silencing or overexpression of PlMYB308. A dual-luciferase assay showed that PlMYB308 specifically bound to the PlACO1 promoter. High expression levels of PlMYB308 were accompanied by low petal anthocyanin accumulation in senescing petals. A further bimolecular fluorescence complementation assay revealed an interaction between PlMYB308 and PlbHLH33, which was supposed to inhibit the anthocyanin biosynthesis. Taken together, our results suggest that the PlMYB308-PlACO1 and PlMYB308-PlbHLH33 regulatory checkpoints perhaps positively and negatively operate the production of ethylene and anthocyanin, respectively, and thus contribute to the senescence with impaired pigmentation in herbaceous peony flowers.


Euphytica ◽  
2021 ◽  
Vol 217 (9) ◽  
Author(s):  
Ju Young Ahn ◽  
Hayoung Song ◽  
Chang Soon Jang ◽  
Yoonkang Hur ◽  
Hankuil Yi

2021 ◽  
Vol 12 ◽  
Author(s):  
Hyo-suk Kim ◽  
Ji Hye Yoo ◽  
Soo Hyun Park ◽  
Jun-Sik Kim ◽  
Youngchul Chung ◽  
...  

Dietary supplements of anthocyanin-rich vegetables have been known to increase potential health benefits for humans. The optimization of environmental conditions to increase the level of anthocyanin accumulations in vegetables during the cultivation periods is particularly important in terms of the improvement of agricultural values in the indoor farm using artificial light and climate controlling systems. This study reports on the measurement of variations in anthocyanin accumulations in leaf tissues of four different cultivars in Brassica rapa var. chinensis (bok choy) grown under the different environmental conditions of the indoor farm using hyperspectral imaging. Anthocyanin accumulations estimated by hyperspectral imaging were compared with the measured anthocyanin accumulation obtained by destructive analysis. Between hyperspectral imaging and destructive analysis values, no significant differences in anthocyanin accumulation were observed across four bok choy cultivars grown under the anthocyanin stimulation environmental condition, whereas the estimated anthocyanin accumulations displayed cultivar-dependent significant differences, suggesting that hyperspectral imaging can be employed to measure variations in anthocyanin accumulations of different bok choy cultivars. Increased accumulation of anthocyanin under the stimulation condition for anthocyanin accumulation was observed in “purple magic” and “red stem” by both hyperspectral imaging and destructive analysis. In the different growth stages, no significant differences in anthocyanin accumulation were found in each cultivar by both hyperspectral imaging and destructive analysis. These results suggest that hyperspectral imaging can provide comparable analytic capability with destructive analysis to measure variations in anthocyanin accumulation that occurred under the different light and temperature conditions of the indoor farm. Leaf image analysis measuring the percentage of purple color area in the total leaf area displayed successful classification of anthocyanin accumulation in four bok choy cultivars in comparison to hyperspectral imaging and destructive analysis, but it also showed limitation to reflect the level of color saturation caused by anthocyanin accumulation under different environmental conditions in “red stem,” “white stem,” and “green stem.” Finally, our hyperspectral imaging system was modified to be applied onto the high-throughput plant phenotyping system, and its test to analyze the variation of anthocyanin accumulation in four cultivars showed comparable results with the result of the destructive analysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maha Afifi ◽  
David Obenland ◽  
Ashraf El-kereamy

Deficit irrigation (DI) is an irrigation scheduling technique that is used in grapes to improve red color development; however, results are not always satisfactory in table grapes. The red color in grapes is mainly due to the plant pigment anthocyanin. In the present study, the anthocyanin biosynthesis in Scarlet Royal grapes (Vitis vinifera L.) grown in the San Joaquin and Coachella Valleys, and subjected to two different DI strategies was investigated. The objective of this study was to identify potential regulatory factors that may lead to potential treatments to improve red color in table grapes, especially under warm climate conditions. In both locations, DI induced the expression of several genes involved in three major pathways that control the red color in table grapes: anthocyanin biosynthesis, hormone biosynthesis, and antioxidant system. DI at veraison induced anthocyanin accumulation and enhanced red color in berries at harvest time. However, anthocyanin accumulation was lower at the Coachella Valley compared to the San Joaquin Valley. The lower level of anthocyanin was associated with lower expression of critical genes involved in anthocyanin biosynthesis, such as flavonoid-3-O-glucosyltransferase (UFGT), myb-related regulatory gene (R2R3-MYB) (MYBA1), basic helix-loop-helix (bHLH) (MYCA1) and the tryptophan-aspartic acid repeat (WDR or WD40) proteins (WDR1). Further, gene expression analysis revealed the association of ABA biosynthesis gene 9-cis-epoxycarotenoid dioxygenase (NCED1), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO3), and the gibberellic acid (GA) catabolic gene GA2 oxidase (GA2ox1) in the induction of anthocyanin biosynthesis. An increase in the chalcone synthase gene (CHS2) was observed in response to DI treatments in both sites. However, CHS2 expression was higher in Coachella Valley after ending the DI treatment, suggesting the involvement of environmental stress in elevating its transcripts. This data was also supported by the lower level of antioxidant gene expression and enzyme activities in the Coachella Valley compared to the San Joaquin Valley. The present data suggested that the lack of grape red coloration could partially be due to the lower level of antioxidant activities resulting in accelerated anthocyanin degradation and impaired anthocyanin biosynthesis. It seems that under challenging warmer conditions, several factors are required to optimize anthocyanin accumulation via DI, including an active antioxidant system, proper light perception, and hormonal balance.


Sign in / Sign up

Export Citation Format

Share Document