scholarly journals Efficient Determination of Slip-Link Parameters from Broadly Polydisperse Linear Melts

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 908 ◽  
Author(s):  
Néstor Valadez-Pérez ◽  
Konstantin Taletskiy ◽  
Jay Schieber ◽  
Maksim Shivokhin

We investigate the ability of a coarse-grained slip-link model and a simple double reptation model to describe the linear rheology of polydisperse linear polymer melts. Our slip-link model is a well-defined mathematical object that can describe the equilibrium dynamics and non-linear rheology of flexible polymer melts with arbitrary polydispersity and architecture with a minimum of inputs: the molecular weight of a Kuhn step, the entanglement activity, and Kuhn step friction. However, this detailed model is computationally expensive, so we also examine predictions of the cheaper double reptation model, which is restricted to only linear rheology near the terminal zone. We report the storage and loss moduli for polydisperse polymer melts and compare with experimental measurements from small amplitude oscillatory shear. We examine three chemistries: polybutadiene, polypropylene and polyethylene. We also use a simple double reptation model to estimate parameters for the slip-link model and examine under which circumstances this simplified model works. The computational implementation of the slip-link model is accelerated with the help of graphics processing units, which allow us to simulate in parallel large ensembles made of up to 50,000 chains. We show that our simulation can predict the dynamic moduli for highly entangled polymer melts over nine decades of frequency. Although the double reptation model performs well only near the terminal zone, it does provide a convenient and inexpensive way to estimate the entanglement parameter for the slip-link model from polydisperse data.

Author(s):  
H. Jelger Risselada ◽  
Helmut Grubmüller

AbstractFusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.


Soft Matter ◽  
2012 ◽  
Vol 8 (8) ◽  
pp. 2385-2397 ◽  
Author(s):  
David N. LeBard ◽  
Benjamin G. Levine ◽  
Philipp Mertmann ◽  
Stephen A. Barr ◽  
Arben Jusufi ◽  
...  

2000 ◽  
Vol 122 (4) ◽  
pp. 225-232 ◽  
Author(s):  
David B. Lanning ◽  
M.-H. Herman Shen

This study investigates the reliability of a plate containing a semi-elliptical surface crack intersecting regions of dissimilar material properties. A weakest-link model is developed to express fracture toughness distributions in terms of effective crack lengths that account for the varying stress intensity factor along the crack front. The model is intended to aid in the development of fracture toughness distributions for cracks encountering local brittle zones (LBZ) in the heat-affected zones (HAZ) of welded joints, where lower-bound fracture toughness values have been measured in the laboratory when a significant portion of the crack front is intersecting the coarse-grained LBZs. An example reliability analysis is presented for a surface crack in a material containing alternating bands of two Weibull-distributed toughnesses. [S0892-7219(00)01203-6]


Sign in / Sign up

Export Citation Format

Share Document