terminal zone
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2653
Author(s):  
Martina Francesca Marongiu ◽  
Cristina Porcu ◽  
Noemi Pascale ◽  
Andrea Bellodi ◽  
Alessandro Cau ◽  
...  

Oviducal glands (OGs) are distinct expanded regions of the anterior portion of the oviduct, commonly found in chondrichthyans, which play a key role in the production of the egg in-vestments and in the female sperm storage (FSS). The FSS phenomenon has implications for understanding the reproductive ecology and management of exploited populations, but little information is available on its taxonomic extent. For the first time, mature OGs from three lecithotrophic oviparous and four yolk-sac viviparous species, all considered at risk from the fishing impacts in the central western Mediterranean Sea, were examined using light microscopy. The OG microanatomy, whose morphology is generally conserved in all species, shows differences within the two reproductive modalities. Oviparous species show a more developed baffle zone in respect to viviparous ones because of the production of different egg envelopes produced. Among oviparous species, Raja polystigma and Chimaera monstrosa show presence of sperm, but not sperm storage as observed, instead, in Galeus melastomus and in all the viviparous sharks, which preserve sperm inside of specialized structures in the terminal zone.


2021 ◽  
Author(s):  
Yin Yang ◽  
Dionisios Youlatos ◽  
Alison M Behie ◽  
Roula Al Belbeisi ◽  
Zhipang Huang ◽  
...  

Abstract Studies on positional behavior and canopy use are essential for understanding how arboreal animals adapt their morphological characteristics and behaviors to the challenges of their environment. This study explores canopy and substrate use along with positional behavior in adult black snub-nosed monkeys Rhinopithecus strykeri, an endemic, critically endangered primate species in Gaoligong Mountains, southwest China. Using continuous focal animal sampling, we collected data over a 52-month period and found that R. strykeri is highly arboreal primarily using the high layers of the forest canopy (15–30 m), along with the terminal zone of tree crowns (52.9%), medium substrates (41.5%), and oblique substrates (56.8%). We also found sex differences in canopy and substrate use. Females use the terminal zones (56.7% versus 40.4%), small/medium (77.7% versus 60.1%), and oblique (59.9% versus 46.5%) substrates significantly more than males. On the other hand, males spend more time on large/very large (39.9% versus 22.3%) and horizontal (49.7% versus 35.2%) substrates. Whereas both sexes mainly sit (84.7%), and stand quadrupedally (9.1%), males stand quadrupedally (11.5% versus 8.3%), and bipedally (2.9% versus 0.8%) more often than females. Clamber, quadrupedalism, and leap/drop are the main locomotor modes for both sexes. Rhinopithecus strykeri populations never enter canopies of degenerated secondary forest and mainly use terminal branches in the middle and upper layers of canopies in intact mid-montane moist evergreen broadleaf forest and hemlock coniferous broadleaf mixed forests across their habitat.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 240
Author(s):  
Maria Hurnik ◽  
Jan Kaczmarczyk ◽  
Zbigniew Popiolek

The knowledge of the air velocity distribution in the supply jets is essential when designing ventilation and air conditioning systems. In this study, we tested and analyzed the velocity distributions in the radial wall jets—these jets are commonly used in ventilated rooms. Tests included jets from two ceiling diffusers of different constructions, at three airflow rates. The mean air speed distributions were measured with a 16-channel hot-sphere anemometer both in the self-similarity zone and in the terminal zone. A specially developed method of converting the mean speed to mean velocity was used. The measurement results show that the spread coefficients of the jets from both diffusers were the same, but the positions of the virtual origin were different. Due to the friction of the jet with the ceiling and the transfer of momentum to the recirculating flows, the momentum flux in the self-similarity zone decreased by up to 50%. An improved method for calculating velocity distributions in radial wall jets was developed and validated. This method takes into account the decrease of momentum, non-zero position of the jet origin, and faster velocity decrease in the terminal zone. A reliable method of predicting air velocity distribution in radial wall jets (RWJs) from ceiling diffusers may allow to properly select the diffuser size, its location, and the range of flow rate changes. The design process for variable air volume systems can be facilitated.


2019 ◽  
Vol 19 (1) ◽  
pp. 128-141 ◽  
Author(s):  
Hazal Haytural ◽  
Georgios Mermelekas ◽  
Ceren Emre ◽  
Saket Milind Nigam ◽  
Steven L. Carroll ◽  
...  

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 908 ◽  
Author(s):  
Néstor Valadez-Pérez ◽  
Konstantin Taletskiy ◽  
Jay Schieber ◽  
Maksim Shivokhin

We investigate the ability of a coarse-grained slip-link model and a simple double reptation model to describe the linear rheology of polydisperse linear polymer melts. Our slip-link model is a well-defined mathematical object that can describe the equilibrium dynamics and non-linear rheology of flexible polymer melts with arbitrary polydispersity and architecture with a minimum of inputs: the molecular weight of a Kuhn step, the entanglement activity, and Kuhn step friction. However, this detailed model is computationally expensive, so we also examine predictions of the cheaper double reptation model, which is restricted to only linear rheology near the terminal zone. We report the storage and loss moduli for polydisperse polymer melts and compare with experimental measurements from small amplitude oscillatory shear. We examine three chemistries: polybutadiene, polypropylene and polyethylene. We also use a simple double reptation model to estimate parameters for the slip-link model and examine under which circumstances this simplified model works. The computational implementation of the slip-link model is accelerated with the help of graphics processing units, which allow us to simulate in parallel large ensembles made of up to 50,000 chains. We show that our simulation can predict the dynamic moduli for highly entangled polymer melts over nine decades of frequency. Although the double reptation model performs well only near the terminal zone, it does provide a convenient and inexpensive way to estimate the entanglement parameter for the slip-link model from polydisperse data.


2018 ◽  
Vol 180 ◽  
pp. 111-131 ◽  
Author(s):  
D.A. Swift ◽  
S.J. Cook ◽  
D.J. Graham ◽  
N.G. Midgley ◽  
A.E. Fallick ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Thomas McColgan ◽  
Ji Liu ◽  
Paula Tuulia Kuokkanen ◽  
Catherine Emily Carr ◽  
Hermann Wagner ◽  
...  

Extracellular field potentials (EFPs) are an important source of information in neuroscience, but their physiological basis is in many cases still a matter of debate. Axonal sources are typically discounted in modeling and data analysis because their contributions are assumed to be negligible. Here, we established experimentally and theoretically that contributions of axons to EFPs can be significant. Modeling action potentials propagating along axons, we showed that EFPs were prominent in the presence of terminal zones where axons branch and terminate in close succession, as found in many brain regions. Our models predicted a dipolar far field and a polarity reversal at the center of the terminal zone. We confirmed these predictions using EFPs from the barn owl auditory brainstem where we recorded in nucleus laminaris using a multielectrode array. These results demonstrate that axonal terminal zones can produce EFPs with considerable amplitude and spatial reach.


Sign in / Sign up

Export Citation Format

Share Document