scholarly journals Direct Pre-lithiation of Electropolymerized Carbon Nanotubes for Enhanced Cycling Performance of Flexible Li-Ion Micro-Batteries

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 406 ◽  
Author(s):  
Vinsensia Ade Sugiawati ◽  
Florence Vacandio ◽  
Neta Yitzhack ◽  
Yair Ein-Eli ◽  
Thierry Djenizian

Carbon nanotubes (CNT) are used as anodes for flexible Li-ion micro-batteries. However, one of the major challenges in the growth of flexible micro-batteries with CNT as the anode is their immense capacity loss and a very low initial coulombic efficiency. In this study, we report the use of a facile direct pre-lithiation to suppress high irreversible capacity of the CNT electrodes in the first cycles. Pre-lithiated polymer-coated CNT anodes displayed good rate capabilities, studied up to 30 C and delivered high capacities of 850 mAh g−1 (313 μAh cm−2) at 1 C rate over 50 charge-discharge cycles.

2015 ◽  
Vol 3 (42) ◽  
pp. 20935-20943 ◽  
Author(s):  
Sang-Hoon Park ◽  
Dongjoon Ahn ◽  
Young-Min Choi ◽  
Kwang Chul Roh ◽  
Kwang-Bum Kim

The low initial coulombic efficiency of a Si-based anode can hinder the performance of practical full-cell Li-ion batteries (LIBs), as the irreversible capacity loss of the anode can diminish the reversible full-cell capacity and the energy efficiency.


2021 ◽  
Vol 21 (10) ◽  
pp. 5296-5301
Author(s):  
Ahmad Umar ◽  
Faheem Ahmed ◽  
Ahmed A. Ibrahim ◽  
Hassan Algadi ◽  
Hasan B. Albargi ◽  
...  

Herein, we report a facile hydrothermal synthesis of MnO2 nanoparticles anchored multi walled carbon nanotubes (MnO2@MWCNTs) as potential anode materials for lithium-ion (Li-ion) batteries. The prepared MnO2@MWCNTs were characterized by several techniques which confirmed the formation of MnO2 nanoparticles anchored MWCNTs. The X-ray diffraction and Raman-scattering analyses of the prepared material further revealed the effective synthesis of MnO2@MWCNTs. The fabricated Li-ion battery based on MnO2@MWCNTs exhibited a reversible capacity of ~823 mAhg−1 at a current density of 100 mAg−1 for the first cycle, and delivered a capacity of ~421 mAhg−1 for the 60 cycles. The coulombic efficiency was found to be ~100% which showed excellent reversible charge–discharge behavior. The outstanding performance of the MnO2@MWCNTs anode for the Li-ion battery can be attributed to the distinctive morphology of the MnO2 nanoparticles anchored MWCNTs that facilitated the fast transport of lithium ions and electrons and accommodated a broad volume change during the cycles of charge/discharge.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39997-40004 ◽  
Author(s):  
Jasmin Smajic ◽  
Amira Alazmi ◽  
Shashikant P. Patole ◽  
Pedro M. F. J. Costa

Structural breakdown and capacity loss of a red phosphorus-based anode material for lithium-ion batteries have been considerably attenuated with the addition of single-walled carbon nanotubes.


2011 ◽  
Vol 1333 ◽  
Author(s):  
R. Prasada Rao ◽  
L. Kangle ◽  
S. Adams ◽  
M.V. Reddy ◽  
B.V.R. Chowdari

ABSTRACTThe electrochemical storage performance of anatase TiO2 nanotubes (NT) is compared to the performance of TiO2 nanotubes covered by sulfur. Charge/discharge curves and cycling performance of TiO2 NT with and without sulfur deposition with respect to lithium anodes are demonstrated in electrochemical test cells. At 0.5C cycle rate the TiO2 NT exhibited a first cycle specific charge/discharge capacity of 180/155 mAh/g, whereas the TiO2 NT deposited with sulfur showed a remarkably higher performance at 0.5C cycle rate with first cycle charge/ discharge specific capacities of 258/260 mAh/g and a coulombic efficiency of 98%.


2016 ◽  
Vol 4 (47) ◽  
pp. 18416-18425 ◽  
Author(s):  
Fu-Da Yu ◽  
Lan-Fang Que ◽  
Zhen-Bo Wang ◽  
Yin Zhang ◽  
Yuan Xue ◽  
...  

We report an effective approach to fabricate layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures as a cathode material for Li-ion batteries. The resultant material exhibits a reduced first-cycle irreversible capacity loss, rapid Li-ion diffusion rate and excellent cycle stability.


2018 ◽  
Vol 6 (7) ◽  
pp. 3022-3027 ◽  
Author(s):  
Ming Chen ◽  
Bo Li ◽  
Xuejiao Liu ◽  
Ling Zhou ◽  
Lin Yao ◽  
...  

B-Doped pSi exhibits an exceptionally high initial coulombic efficiency of 89% and shows outstanding cycling performance (reversible capacity of 1500 mA h g−1 at 2 A g−1 after 300 cycles).


1999 ◽  
Author(s):  
W. Jiang ◽  
X. Song ◽  
K. Kinoshita ◽  
T. Tran

2019 ◽  
Vol 7 (19) ◽  
pp. 11996-12007 ◽  
Author(s):  
Julija Vinckevičiūtė ◽  
Maxwell D. Radin ◽  
Nicholas V. Faenza ◽  
Glenn G. Amatucci ◽  
Anton Van der Ven

Interlayer cation migration in layered cathodes, which can lead to irreversible capacity loss, is affected by surrounding transition metals.


ChemSusChem ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 3377-3382 ◽  
Author(s):  
Rusheng Fu ◽  
Yongkang Wu ◽  
Chongzhao Fan ◽  
Zuxin Long ◽  
Guangjie Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document