Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability

2018 ◽  
Vol 6 (7) ◽  
pp. 3022-3027 ◽  
Author(s):  
Ming Chen ◽  
Bo Li ◽  
Xuejiao Liu ◽  
Ling Zhou ◽  
Lin Yao ◽  
...  

B-Doped pSi exhibits an exceptionally high initial coulombic efficiency of 89% and shows outstanding cycling performance (reversible capacity of 1500 mA h g−1 at 2 A g−1 after 300 cycles).

2015 ◽  
Vol 3 (12) ◽  
pp. 6402-6407 ◽  
Author(s):  
Lin Wang ◽  
Zhongyuan Nie ◽  
Chuanbao Cao ◽  
Youqi Zhu ◽  
Syed Khalid

Rational chrysanthemum-like TiO2 nanostructures have been developed by a facile effective approach as the anode materials, exhibiting good lithium storage performances with excellent rate capacity and good cycling stability (see the picture), which are much better than those of TiO2 electrodes reported so far under similar testing conditions.


2021 ◽  
Author(s):  
Xuexia Lan ◽  
Jie Cui ◽  
Xiaofeng Zhang ◽  
Renzong Hu ◽  
Liang Tan ◽  
...  

Abstract Among the promising high capacity anode materials, tin dioxide (SnO2) represents a classic and important candidate that involves both conversion and alloying reactions toward Li storage. However, the inferior reversibility of conversion reactions usually results in low initial Coulombic efficiency (ICE, ~ 60%), small reversible capacity and poor cycling stability of electrodes. Here, we demonstrate that by carefully designing the interface structure of SnO2-Mo, a breakthrough comprehensive performance with ultrahigh average ICE up to 92.6 %, large capacity of 1067 mA h g-1 and 100 % capacity retention after 200 cycles can be realized in a multilayer Mo/SnO2/Mo electrode. The amorphous SnO2/Mo interfaces, which are induced by redistribution of oxygen atoms between SnO2 and Mo, can precisely adjust the reversible capacity and cycling stability of the multilayers, while the stable capacities of electrodes are parabolic with the interfacial density. Theoretical calculations and in/ex-situ experimental investigation clearly reveal that oxygen redistribution in the SnO2/Mo hetero-interfaces boosts the Li ions transport kinetics by inducing a built-in electric field and improves the reaction reversibility of SnO2. This work provides a new understanding of the interface-performance relationship of metal-oxide hybrid electrodes and pivotal guidance for creating high performance Li-ion batteries.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63012-63016 ◽  
Author(s):  
Yourong Wang ◽  
Wei Zhou ◽  
Liping Zhang ◽  
Guangsen Song ◽  
Siqing Cheng

A SiO2@NiO core–shell electrode exhibits almost 100% coulombic efficiency, excellent cycling stability and rate capability after the first few cycles.


RSC Advances ◽  
2015 ◽  
Vol 5 (53) ◽  
pp. 42922-42930 ◽  
Author(s):  
Diganta Saikia ◽  
Tzu-Hua Wang ◽  
Chieh-Ju Chou ◽  
Jason Fang ◽  
Li-Duan Tsai ◽  
...  

Ordered mesoporous carbons CMK-3 and CMK-8 with different mesostructures are evaluated as anode materials for lithium-ion batteries. CMK-8 possesses higher reversible capacity, better cycling stability and rate capability than CMK-3.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document