scholarly journals Facile Mixing of Phospholipids Promotes Self-Assembly of Low-Molecular-Weight Biodegradable Block Co-Polymers into Functional Vesicular Architectures

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 979
Author(s):  
Amit Kumar Khan ◽  
James C. S. Ho ◽  
Susmita Roy ◽  
Bo Liedberg ◽  
Madhavan Nallani

In this work, we have used low-molecular-weight (PEG12-b-PCL6, PEG12-b-PCL9 or PEG16-b-PLA38; MW, 1.25–3.45 kDa) biodegradable block co-polymers to construct nano- and micron-scaled hybrid (polymer/lipid) vesicles, by solvent dispersion and electroformation methods, respectively. The hybrid vesicles exhibit physical properties (size, bilayer thickness and small molecule encapsulation) of a vesicular boundary, confirmed by cryogenic transmission electron microscopy, calcein leakage assay and dynamic light scattering. Importantly, we find that these low MW polymers, on their own, do not self-assemble into polymersomes at nano and micron scales. Using giant unilamellar vesicles (GUVs) model, their surface topographies are homogeneous, independent of cholesterol, suggesting more energetically favorable mixing of lipid and polymer. Despite this mixed topography with a bilayer thickness similar to that of a lipid bilayer, variation in surface topology is demonstrated using the interfacial sensitive phospholipase A2 (sPLA2). The biodegradable hybrid vesicles are less sensitive to the phospholipase digestion, reminiscent of PEGylated vesicles, and the degree of sensitivity is polymer-dependent, implying that the nano-scale surface topology can further be tuned by its chemical composition. Our results reveal and emphasize the role of phospholipids in promoting low MW polymers for spontaneous vesicular self-assembly, generating a functional hybrid lipid-polymer interface.

2014 ◽  
Vol 67 (5) ◽  
pp. 819
Author(s):  
Syed Mujtaba Shah ◽  
Zafar Iqbal ◽  
Muzaffar Iqbal ◽  
Naila Shahzad ◽  
Amina Hana ◽  
...  

Porphyrin dyes have an inherent tendency to aggregate. This leads to a self-quenching phenomenon that hinders electron transfer to the conduction band of semiconductors in dye-sensitized solar cells. Self-quenching adversely affects the efficiency of solar cells. Here, we report the interaction of porphyrin with pristine and acid-functionalized fullerene molecules on the surface of ZnO nanoparticles under chemisorbed conditions. Chemisorption of porphyrin only on ZnO nanoparticles instigates aggregation of the porphyrin molecules. These aggregates can be effectively broken by chemisorbing fullerene molecules on the surface of the ZnO nanoparticles. This is due to self-assembly formation processes because of porphyrin–fullerene interactions. The nanohybrid material, consisting of ZnO nanorods, acid-functionalized porphyrin, and fullerene derivatives, was characterized by UV–visible spectroscopy, fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The material generates better performing dye-sensitized solar cells when compared with those fabricated from porphyrin-based photo-active material.


2019 ◽  
Vol 58 (12) ◽  
pp. 3800-3803 ◽  
Author(s):  
Yiming Wang ◽  
Robin M. de Kruijff ◽  
Matija Lovrak ◽  
Xuhong Guo ◽  
Rienk Eelkema ◽  
...  

2020 ◽  
Vol 56 (69) ◽  
pp. 9954-9957
Author(s):  
Daisuke Yamaguchi ◽  
Yuka Ikemoto ◽  
Takashi Kato

Two orthogonal (grid-like) and one directional fibrous structures are selectively formed through anisotropic self-assembly of low-molecular-weight gelators in liquid-crystalline smectic A templates depending on thermally tuned layered structures.


2007 ◽  
Vol 129 (18) ◽  
pp. 5804-5805 ◽  
Author(s):  
Di Li ◽  
Bella Shlyahovsky ◽  
Johann Elbaz ◽  
Itamar Willner

1982 ◽  
Vol 243 (5) ◽  
pp. C212-C221 ◽  
Author(s):  
A. E. Pegg ◽  
P. P. McCann

Polyamines are ubiquitous organic cations of low molecular weight. The content of these amines is closely regulated by the cell according to the state of growth. The reactions responsible for the biosynthesis and interconversion of the polyamines and their precursor putrescine are described and the means by which polyamine content can be varied in response to exogenous stimuli are discussed. The role of polyamines in the cell cycle, cell division, tissue growth, and differentiation is considered. Recent studies using highly specific inhibitors of polyamine biosynthesis such as alpha-difluoromethylornithine to prevent accumulation of polyamines have indicated that the synthesis of polyamines is intimately associated with these processes. Such inhibitors have great potential for investigation of the cellular role of polyamines.


Sign in / Sign up

Export Citation Format

Share Document