scholarly journals Challenges and Opportunities for Recycled Polyethylene Fishing Nets: Towards a Circular Economy

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3155
Author(s):  
Rafael Juan ◽  
Carlos Domínguez ◽  
Nuria Robledo ◽  
Beatriz Paredes ◽  
Sara Galera ◽  
...  

Plastic waste generation has become an important problem that critically affects marine and oceans environments. Fishing nets gear usually have a relatively short lifespan, and are abandoned, discarded and lost, what makes them one of the largest generators of ocean plastic waste. Recycled polyolefin resins from fishing nets (rFN), especially from polyethylene (PE), have poor properties due to the presence of contaminants and/or excessive degradation after its lifetime. These reasons limit the use of these recycled resins. This work aims to study the incorporation of recycled fishing nets PE-made to different grades of virgin PE, in order to evaluate the potential use of these rFN in the development of new products. The recovered fishing nets have been fully characterized to evaluate its properties after the collection and recycling process. Then, different PE virgin resins have been mechanically blended with the recovered fishing nets at different recycling contents to study its feasibility for fishing nets or packaging applications. Critical mechanical properties for these applications, as the elongation at break, impact strength or environmental stress cracking resistance have been deeply evaluated. Results show important limitations for the manufacture of fibers from recycled PE fishing nets due to the presence of inorganic particles from the marine environment, which restricts the use of rFN for its original application. However, it is proved that a proper selection of PE raw resins, to be used in the blending process, allows other possible applications, such as non-food contact bottles, which open up new ways for using the fishing nets recyclates, in line with the objectives pursued by the Circular Economy of Plastics.

2021 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Alessandro Fontana ◽  
Andrea Barni ◽  
Deborah Leone ◽  
Maurizio Spirito ◽  
Agata Tringale ◽  
...  

Even if the economy nowadays is still locked into a linear model of production, tighter environmental standards, resource scarcity and changing consumer expectations are forcing organizations to find alternatives to lighten their impacts. The concept of Circular Economy (CE) is to an increasing extent treated as a solution to this series of challenges. That said, the multitude of approaches and definitions around CE and Life Cycle Extension Strategies (LCES) makes it difficult to provide (Small and Medium Enterprise) SMEs with a consistent understanding of the topic. This paper aims at bridging this gap by providing a systematic literature review of the most prominent papers related to the CE and lifetime extension, with a particular focus on the equipment and machinery sector. A taxonomy was used to define and cluster a subset of selected papers to build a homogeneous approach for understanding the multiple strategies used in the industry, and the standards in maintenance and remanufacturing strategies. As a final research step, we also propose a Strategy Characterization Framework (SCF) to build the ground for the selection of the best strategy to be applied for production equipment life cycle extension on several industrial use cases.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1229
Author(s):  
Alberto Di Bartolo ◽  
Giulia Infurna ◽  
Nadka Tzankova Dintcheva

The European Union is working towards the 2050 net-zero emissions goal and tackling the ever-growing environmental and sustainability crisis by implementing the European Green Deal. The shift towards a more sustainable society is intertwined with the production, use, and disposal of plastic in the European economy. Emissions generated by plastic production, plastic waste, littering and leakage in nature, insufficient recycling, are some of the issues addressed by the European Commission. Adoption of bioplastics–plastics that are biodegradable, bio-based, or both–is under assessment as one way to decouple society from the use of fossil resources, and to mitigate specific environmental risks related to plastic waste. In this work, we aim at reviewing the field of bioplastics, including standards and life cycle assessment studies, and discuss some of the challenges that can be currently identified with the adoption of these materials.


Author(s):  
Keshan Samarasinghe ◽  
Srikanth Pawan Kumar ◽  
Chettiyappan Visvanathan

2021 ◽  
Vol 13 (6) ◽  
pp. 3553
Author(s):  
Philippe Nimmegeers ◽  
Alexej Parchomenko ◽  
Paul De Meulenaere ◽  
Dagmar R. D’hooge ◽  
Paul H. M. Van Steenberge ◽  
...  

Multilevel statistical entropy analysis (SEA) is a method that has been recently proposed to evaluate circular economy strategies on the material, component and product levels to identify critical stages of resource and functionality losses. However, the comparison of technological alternatives may be difficult, and equal entropies do not necessarily correspond with equal recyclability. A coupling with energy consumption aspects is strongly recommended but largely lacking. The aim of this paper is to improve the multilevel SEA method to reliably assess the recyclability of plastics. Therefore, the multilevel SEA method is first applied to a conceptual case study of a fictitious bag filled with plastics, and the possibilities and limitations of the method are highlighted. Subsequently, it is proposed to extend the method with the computation of the relative decomposition energies of components and products. Finally, two recyclability metrics are proposed. A plastic waste collection bag filled with plastic bottles is used as a case study to illustrate the potential of the developed extended multilevel SEA method. The proposed extension allows us to estimate the recyclability of plastics. In future work, this method will be refined and other potential extensions will be studied together with applications to real-life plastic products and plastic waste streams.


Sign in / Sign up

Export Citation Format

Share Document