inorganic particles
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 126)

H-INDEX

42
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 146
Author(s):  
Zhaoliang Xing ◽  
Chong Zhang ◽  
Naifan Xue ◽  
Zhihui Li ◽  
Fei Li ◽  
...  

High-frequency power transformers are conducive to the reliable grid connection of distributed energy sources. Polyimide is often used for the coating insulation of high-frequency power transformers. However, creeping discharge will cause insulation failure, therefore, it is necessary to use disiloxane for the purpose of modifying the molecular structure of polyimide. This paper not only introduces 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAPD) with a molar content of 1%, 2%, and 5% to polyimide, but also tests both the physical and chemical properties of the modified film and the high frequency creeping dielectric strength. The results show that after adding GAPD, the overall functional groups of the material do not change, at the same time the transfer complexation of intermolecular charge and the absorption of ultraviolet light increase. There is no phase separation of the material and the structure is more regular and ordered, moreover the crystallinity increases. The overall dielectric constant and the dielectric loss tangent value show different trends, which means that the former value increases, while the latter value decreases. In addition, the resistivity of the surface and the volume increase, which is the same as the glass transition temperature. The mechanical properties are excellent, and the strength of bulk breakdown is mounting. The insulation strength of the high frequency creeping surface has been improved, which will increase with larger contents of GAPD. Among them, the relative change of the creeping flashover voltage is not obvious, and the creeping discharge life of G5 is 4.77 times that of G0. Further analysis shows that the silicon-oxygen chain links of the modified film forms a uniformly dispersed Si-O-Si network in the matrix through chemical bonds and charge transfer complexation. Once the outer matrix is destroyed, it will produce dispersed flocculent inorganic particles which have the role of protecting the inner material and improving the performance of the material. Combined with the ultraviolet light energy absorption, the increase of deep traps, the reduction of dielectric loss, and the improvement of thermodynamic performance, can better improve the high-frequency creeping insulation strength of polyimide film and its potential application value.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Wissal Issaoui ◽  
Dimitrios D. Alexakis ◽  
Imen Hamdi Nasr ◽  
Athanasios V. Argyriou ◽  
Evangelos Alevizos ◽  
...  

Mediterranean countries are known worldwide for their significant contribution to olive oil production, which generates large amounts of olive mill wastewater (OMW) that degrades land and water environments near the disposal sites. OMW consists of organic substances with high concentrations of phenolic compounds along with inorganic particles. The aim of this study is to assess the effectiveness of satellite image analysis techniques using multispectral satellite data with high (PlanetScope, 3 × 3 m) and medium (Sentinel-2, 10 × 10 m) spatial resolution to detect Olive Mill Wastewater (OMW) disposal sites, both in the SidiBouzid region (Tunisia) and in the broader Rethymno region on the island of Crete, (Greece). Documentation of the sites was carried out by collecting spectral signatures of OMW at temporal periods. The study integrates the application of a variety of spectral vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), in order to evaluate their efficiency in detecting OMW disposal areas. Furthermore, a set of image-processing methods was applied on satellite images to improve the monitoring of OMW ponds including the false-color composites (FCC), the Principal Component Analysis (PCA), and image fusion. Finally, different classification algorithms, such as the ISODATA, the maximum likelihood (ML), and the Support Vector Machine (SVM) were applied to both satellite images in order to assist in the overall approach to effectively detect the sites. The results obtained from different approaches were compared, evaluating the efficiency of Sentinel-2 and PlanetScope images to detect and monitor OMW disposal areas under different morphological environments.


2021 ◽  
Vol 11 (23) ◽  
pp. 11390
Author(s):  
Giulia Papa ◽  
Giancarlo Capitani ◽  
Marco Pellecchia ◽  
Ilaria Negri

The global demand for bee pollen as a dietary supplement for human nutrition is increasing. Pollen, which comprises proteins and lipids from bees’ diets, is rich in essential amino acids, omega fatty acids, and bioactive compounds that can have beneficial effects on human health. However, bee pollen may also contain contaminants due to environmental contamination. To date, data on bee pollen contamination by environmental pollutants refer almost exclusively to pesticides and heavy metals, and very little information is available on the potential contamination of bee pollen by airborne particulate matter (PM), a ubiquitous pollutant that originates from a wide range of anthropogenic sources (e.g., motor vehicles, industrial processes, agricultural operations). In the present study, pollen grains collected by forager bees living in an industrial area of the Po Valley (Northern Italy) were analyzed for contamination by inorganic PM. The morpho-chemical characterization of inorganic particles using SEM/EDX allowed us to identify different emission sources and demonstrate the potential risk of PM entering the food chain and exposing bees to its ingestion.


2021 ◽  
Vol 43 (4) ◽  
pp. 295-303
Author(s):  
N.V. KOZAK ◽  
◽  
T.A. SHANTALII ◽  

The physical aging was investigated of obtained by sol-gel technology nanocomposites based on polyimide (PI) with card substituents and tetraethoxysylane (TEOS). The results for organic-inorganic composites, that contain of 5%. 20% or 50 % of TEOS, demonstrate that at temperatures well below (400K) the glass transition temperature of the polymer can take place changes in the dynamic characteristics of polymer macrochains and its permeability to low molecular probe as well as changes in aggregation of inorganic component. According to the methods of EPR, optical microscopy, etc. changes that occur in the characteristics of sol-gel polyimide based nanocomposites during long-term storage at temperatures much lower than the glass transition temperature of the polymer can be described as follows. The segmental mobility of the organic component is significantly reduced and the dynamic heterogeneity of the polymer increases. The decrease in the relative permeability of aged nanocomposites with increased content of inorganic component as compared with aged pure PI does not correlate with the content of TEOS in contrast to the initial samples of the same composition. PI macrochains chemically bonded to the inorganic phase have limited ability to realize an optimal conformation in the process of thermal relaxation (physical aging) so the increasing the content of the inorganic component has less effect on reducing the permeability of aged composites compared to aged pure PI. This is consistent with changes in the distribution of inorganic aggregates of composites. There are changes in the mean size of aggregates of inorganic particles in the composite and a decrease in their number. Smoothing is observed of the surface of nanocomposite films as well as disappearance of inhomogeneities caused by the surface of support. Due to the chemical bonding of inorganic particles and polyimide matrix, the peculiarities of the physical aging process of such composites are due to the mutual influence of the inorganic and polymer components.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Antonio León-Jiménez ◽  
José M. Mánuel ◽  
Marcial García-Rojo ◽  
Marina G. Pintado-Herrera ◽  
José Antonio López-López ◽  
...  

Abstract Background Engineered stone silicosis is an emerging disease in many countries worldwide produced by the inhalation of respirable dust of engineered stone. This silicosis has a high incidence among young workers, with a short latency period and greater aggressiveness than silicosis caused by natural materials. Although the silica content is very high and this is the key factor, it has been postulated that other constituents in engineered stones can influence the aggressiveness of the disease. Different samples of engineered stone countertops (fabricated by workers during the years prior to their diagnoses), as well as seven lung samples from exposed patients, were analyzed by multiple techniques. Results The different countertops were composed of SiO2 in percentages between 87.9 and 99.6%, with variable relationships of quartz and cristobalite depending on the sample. The most abundant metals were Al, Na, Fe, Ca and Ti. The most frequent volatile organic compounds were styrene, toluene and m-xylene, and among the polycyclic aromatic hydrocarbons, phenanthrene and naphthalene were detected in all samples. Patients were all males, between 26 and 46 years-old (average age: 36) at the moment of the diagnosis. They were exposed to the engineered stone an average time of 14 years. At diagnosis, only one patient had progressive massive fibrosis. After a follow-up period of 8 ± 3 years, four patients presented progressive massive fibrosis. Samples obtained from lung biopsies most frequently showed well or ill-defined nodules, composed of histiocytic cells and fibroblasts without central hyalinization. All tissue samples showed high proportion of Si and Al at the center of the nodules, becoming sparser at the periphery. Al to Si content ratios turned out to be higher than 1 in two of the studied cases. Correlation between Si and Al was very high (r = 0.93). Conclusion Some of the volatile organic compounds, polycyclic aromatic hydrocarbons and metals detected in the studied countertop samples have been described as causative of lung inflammation and respiratory disease. Among inorganic constituents, aluminum has been a relevant component within the silicotic nodule, reaching atomic concentrations even higher than silicon in some cases. Such concentrations, both for silicon and aluminum showed a decreasing tendency from the center of the nodule towards its frontier.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1282
Author(s):  
Jorge Cesar Masini ◽  
Gilberto Abate

Natural and modified clay minerals have been extensively used for the adsorption/desorption of organic substances, especially pesticides, from waters and wastewater, aiming at pollution control and more efficient use of the herbicides through controlled release. While natural clay minerals efficiently remove organic cations such as paraquat and diquat, the adsorption of anionic or neutral species demands surface chemical modification with, for instance, quaternary ammonium salts containing long alkyl chains. Basic pesticides, on the other hand, are better absorbed in clay minerals modified with polycations. Kinetic studies and adsorption/desorption isotherms provide the parameters needed to evaluate the clay mineral’s adsorptive performance towards the pollutant target. However, the direct comparison of these parameters is complicated because the experimental conditions, the analytical techniques, the kinetic and isotherm models, and the numerical fitting method differ among the various studies. The free-energy-related Langmuir constant depends on the degree of site occupation; that is, it depends on the concentration window used to construct the adsorption isotherm and, consequently, on the analytical technique used to quantify the free concentrations. This paper reviews pesticides’ adsorption on natural and modified clay minerals and proposes guidelines for designing batch adsorption/desorption studies to obtain easily comparable and meaningful adsorption parameters. Articles should clearly describe the experimental conditions such as temperature, contact time, total concentration window, the solution to adsorbent ratio, the analytical technique, and its detection and quantification limits, besides the fitting models. Research should also evaluate the competitive effects of humic substances, colloidal inorganic particles, and ionic strength to emulate real-world adsorption experiments.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3913
Author(s):  
Jianchen Cai ◽  
Jinyun Jiang ◽  
Qun Yang ◽  
Peng Cheng ◽  
Ke Chen ◽  
...  

Die drawing is an effective method for improving the properties of polymer. In this work, polypropylene (PP)/inorganic particle composites were fabricated by a solid-state die drawing process to investigate the effects of drawing parameters, such as inorganic particles types, drawing temperature, and drawing speed, on the thermal properties, microstructure, and mechanical behavior of the drawn composites. The mechanical properties of the material were significantly improved through this processing method. For the drawn PP/inorganic particle composites with 45 wt% CaCO3, when the drawing speed was 2.0 m/min and the drawing temperature was 110 °C, the density of the drawn composites reached the lowest at 1.00 g/cm3. At this time, the tensile strength, flexural strength, and impact strength of the drawn composites were 128.32 MPa, 77.12 MPa, and 170.42 KJ/m2, respectively. This work provides a new strategy for the preparation of lightweight and high-strength PP-based composites, which have broad application prospects in the field of engineering and structural materials.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2021-217870
Author(s):  
Nadia Nathan ◽  
Marie-Emeline Montagne ◽  
Odile Macchi ◽  
Paul-André Rosental ◽  
Simon Chauveau ◽  
...  

Inorganic antigens may contribute to paediatric sarcoidosis. Thirty-six patients matched with 36 healthy controls as well as a group of 21 sickle-cell disease (SCD) controls answered an environmental questionnaire. Patients’ indirect exposure to inorganic particles, through coresidents’ occupations, was higher than in healthy and SCD controls (median score: 2.5 (0.5–7) vs 0.5 (0–2), p=0.003 and 1 (0–2), p=0.012, respectively), especially for construction, exposures to metal dust, talc, abrasive reagents and scouring products. Wood or fossil energies heating were also linked to paediatric sarcoidosis. This study supports a link between mineral environmental exposure due to adult coresident occupations and paediatric sarcoidosis.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5838
Author(s):  
Binbin Li ◽  
Haihong Fan ◽  
Songxiong Ding ◽  
Yixuan Luan ◽  
Yiming Sun

The formation process of Particulate Matter (PM) during sludge pyrolysis at different temperatures (300–700 °C) and the ecological risks of heavy metals were studied. The results showed that the particulate matter is mainly condensed on the quartz film in a carbon-based organic matter when the pyrolysis temperature was between 200–500 °C in a volatilization process. Inorganic particles was found in the particulate matter when the temperature was raised to 500–700 °C in a decomposition stage. Heavy metals were enriched in particulate matter with increase in pyrolysis temperature. When the temperature reached 700 °C, the concentration of Pb and Cd in the particulate matter significantly increased. The ecological risk assessment showed that heavy metals in the sewage sludge had considerable ecological toxicity. When the pyrolysis temperature reached 700 °C, the ecological toxicity of those heavy metals enriched in the particulate matter decreased considerably.


Sign in / Sign up

Export Citation Format

Share Document