scholarly journals Multimode Cavity Optomechanics

Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Paolo Piergentili ◽  
Letizia Catalini ◽  
Mateusz Bawaj ◽  
Stefano Zippili ◽  
Nicola Malossi ◽  
...  

We study theoretically and experimentally the behavior of an optomechanical system where two vibrating dielectric membranes are placed inside a driven Fabry-Pérot cavity. We prove that multi–element systems of mechanical resonators are suitable for enhancing optomechanical performances, and we report a ∼2.47 gain in the optomechanical coupling strength of the membrane relative motion with respect to the single membrane case. With this configuration it is possible to enable cavity optomechanics in the strong single-photon coupling regime.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
I. C. Rodrigues ◽  
D. Bothner ◽  
G. A. Steele

AbstractThe field of optomechanics has emerged as leading platform for achieving quantum control of macroscopic mechanical objects. Implementations of microwave optomechanics to date have coupled microwave photons to mechanical resonators using a moving capacitance. While simple and effective, the capacitive scheme suffers from limitations on the maximum achievable coupling strength. Here, we experimentally implement a fundamentally different approach: flux-mediated optomechanical coupling. In this scheme, mechanical displacements modulate the flux in a superconducting quantum interference device (SQUID) that forms the inductor of a microwave resonant circuit. We demonstrate that this flux-mediated coupling can be tuned in situ by the magnetic flux in the SQUID, enabling nanosecond flux tuning of the optomechanical coupling. Furthermore, we observe linear scaling of the single-photon coupling rate with the in-plane magnetic transduction field, a trend with the potential to overcome the limits of capacitive optomechanics, opening the door for a new generation of groundbreaking optomechanical experiments.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 966
Author(s):  
Ahmad Shafiei Aporvari ◽  
David Vitali

Cavity optomechanics represents a flexible platform for the implementation of quantum technologies, useful in particular for the realization of quantum interfaces, quantum sensors and quantum information processing. However, the dispersive, radiation–pressure interaction between the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It has already been shown both theoretically and experimentally that if the interaction is mediated by a Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid system behaves as an effective cavity optomechanical system in the strong coupling regime.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Ji Xia ◽  
Fuyin Wang ◽  
Chunyan Cao ◽  
Zhengliang Hu ◽  
Heng Yang ◽  
...  

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of . The other nanobeam couples light to excite optical fundamental supermodes at and 1554.464 nm with a larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 . These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Paolo Piergentili ◽  
Wenlin Li ◽  
Riccardo Natali ◽  
David Vitali ◽  
Giovanni Di Giuseppe

Author(s):  
Paolo Piergentili ◽  
Wenlin Li ◽  
Riccardo Natali ◽  
Nicola Malossi ◽  
David Vitali ◽  
...  

2018 ◽  
Vol 24 (2) ◽  
pp. 170-177
Author(s):  
曹智伊 CAO Zhi-yi ◽  
蔡秋华 CAI Qiu-hua ◽  
於亚飞 YU Ya-fei ◽  
张智明 ZHANG Zhi-ming

2014 ◽  
Vol 113 (13) ◽  
Author(s):  
Chang Liu ◽  
Yuan Sun ◽  
Luwei Zhao ◽  
Shanchao Zhang ◽  
M. M. T. Loy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document