scholarly journals Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 966
Author(s):  
Ahmad Shafiei Aporvari ◽  
David Vitali

Cavity optomechanics represents a flexible platform for the implementation of quantum technologies, useful in particular for the realization of quantum interfaces, quantum sensors and quantum information processing. However, the dispersive, radiation–pressure interaction between the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It has already been shown both theoretically and experimentally that if the interaction is mediated by a Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid system behaves as an effective cavity optomechanical system in the strong coupling regime.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrés de los Ríos Sommer ◽  
Nadine Meyer ◽  
Romain Quidant

AbstractQuantum control of a system requires the manipulation of quantum states faster than any decoherence rate. For mesoscopic systems, this has so far only been reached by few cryogenic systems. An important milestone towards quantum control is the so-called strong coupling regime, which in cavity optomechanics corresponds to an optomechanical coupling strength larger than cavity decay rate and mechanical damping. Here, we demonstrate the strong coupling regime at room temperature between a levitated silica particle and a high finesse optical cavity. Normal mode splitting is achieved by employing coherent scattering, instead of directly driving the cavity. The coupling strength achieved here approaches three times the cavity linewidth, crossing deep into the strong coupling regime. Entering the strong coupling regime is an essential step towards quantum control with mesoscopic objects at room temperature.


Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Paolo Piergentili ◽  
Letizia Catalini ◽  
Mateusz Bawaj ◽  
Stefano Zippili ◽  
Nicola Malossi ◽  
...  

We study theoretically and experimentally the behavior of an optomechanical system where two vibrating dielectric membranes are placed inside a driven Fabry-Pérot cavity. We prove that multi–element systems of mechanical resonators are suitable for enhancing optomechanical performances, and we report a ∼2.47 gain in the optomechanical coupling strength of the membrane relative motion with respect to the single membrane case. With this configuration it is possible to enable cavity optomechanics in the strong single-photon coupling regime.


Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 30 ◽  
Author(s):  
Paolo Facchi ◽  
Saverio Pascazio

When two operators A and B do not commute, the calculation of the exponential operator e A + B is a difficult and crucial problem. The applications are vast and diversified: to name but a few examples, quantum evolutions, product formulas, quantum control, Zeno effect. The latter are of great interest in quantum applications and quantum technologies. We present here a historical survey of results and techniques, and discuss differences and similarities. We also highlight the link with the strong coupling regime, via the adiabatic theorem, and contend that the “pulsed” and “continuous” formulations differ only in the order by which two limits are taken, and are but two faces of the same coin.


2014 ◽  
Vol 22 (15) ◽  
pp. 18254 ◽  
Author(s):  
Wen-ju Gu ◽  
Gao-xiang Li ◽  
Shao-ping Wu ◽  
Ya-ping Yang

Sign in / Sign up

Export Citation Format

Share Document