scholarly journals Measurement of Pelvic Orientation Angles during Sprinting Using a Single Inertial Sensor

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 10 ◽  
Author(s):  
Tomohito Wada ◽  
Ryu Nagahara ◽  
Sam Gleadhill ◽  
Tatsuro Ishizuka ◽  
Hayato Ohnuma ◽  
...  

The purpose of this study was to elucidate pelvic orientation angles using a single lower back-mounted inertial sensor during sprinting. A single inertial sensor was attached to each sprinter’s lower back, used to measure continuous pelvic movements including pelvic obliquity (roll), anterior-posterior tilt (pitch) and rotation (yaw) during sprinting from a straight to bend section. The pelvic orientation angles were estimated with the three-dimensional sensor orientation using a sensor fusion algorithm. Absolute angles derived from the sensor were compared with angles obtained from an optical motion capture system over a 15 m length. The root mean squared error between the sensor and motion capture data were 4.1° for roll, 2.8° for pitch and 3.6° for yaw. Therefore, the sensor was comparable to the motion capture system for tracking pelvic angle changes. The inertial sensor is now supported as a valid tool to measure movements of the pelvis during sprinting.

Author(s):  
Kodai Kitagawa ◽  
Ibai Gorordo Fernandez ◽  
Takayuki Nagasaki ◽  
Sota Nakano ◽  
Mitsumasa Hida ◽  
...  

Assistive motion for sit-to-stand causes lower back pain (LBP) among caregivers. Considering previous studies that showed that foot position adjustment could reduce lumbar load during assistive motion for sit-to-stand, quantitative monitoring of and instructions on foot position could contribute toward reducing LBP among caregivers. The present study proposes and evaluates a new method for the quantitative measurement of foot position during assistive motion for sit-to-stand using a few wearable sensors that are not limited to the measurement area. The proposed method measures quantitative foot position (anteroposterior and mediolateral distance between both feet) through a machine learning technique using features obtained from only a single inertial sensor on the trunk and shoe-type force sensors. During the experiment, the accuracy of the proposed method was investigated by comparing the obtained values with those from an optical motion capture system. The results showed that the proposed method produced only minor errors (less than 6.5% of body height) when measuring foot position during assistive motion for sit-to-stand. Furthermore, Bland–Altman plots suggested no fixed errors between the proposed method and the optical motion capture system. These results suggest that the proposed method could be utilized for measuring foot position during assistive motion for sit-to-stand.


Author(s):  
Sol Lim ◽  
Andrea Case ◽  
Clive D’Souza

This study examined interactions between inertial sensor (IS) performance and physical task demand on posture kinematics in a two-handed force exertion task. Fifteen male individuals participated in a laboratory experiment that involved exerting a two-handed isometric horizontal force on an instrumented height-adjustable handle. Physical task demand was operationalized by manipulating vertical handle height, target force magnitude, and force direction. These factors were hypothesized to influence average estimates of torso flexion angle measured using inertial sensors and an optical motion capture (MC) system, as well as the root mean squared errors (RMSE) between instrumentation computed over a 3s interval of the force exertion task. Results indicate that lower handle heights and higher target force levels were associated with increased torso and pelvic flexion in both, push and pull exertions. Torso flexion angle estimates obtained from IS and MC did not differ significantly. However, RMSE increased with target force intensity suggesting potential interactive effects between measurement error and physical task demand.


2011 ◽  
Vol 08 (02) ◽  
pp. 275-299 ◽  
Author(s):  
JUNG-YUP KIM ◽  
YOUNG-SEOG KIM

This paper, describes the development of a motion capture system with novel features for biped robots. In general, motion capture is effectively utilized in the field of computer animation. In the field of humanoid robotics, the number of studies attempting to design human-like gaits by using expensive optical motion capture systems is increasing. The optical motion capture systems used in these studies have involved a large number of cameras because such systems use small-sized ball markers; hence the position accuracy of the markers and the system calibration are very significant. However, since the human walking gait is a simple periodic motion rather than a complex motion, we have developed a specialized motion capture system for this study using dual video cameras and large band-type markers without high-level system calibration in order to capture the human walking gait. In addition to its lower complexity, the proposed capture method requires only a low-cost system and has high space efficiency. An image processing algorithm is also proposed for deriving the human gait data. Finally, we verify the reliability and accuracy of our system by comparing a zero moment point (ZMP) trajectory calculated by the motion captured data with a ZMP trajectory measured by foot force sensors.


2017 ◽  
Vol 2017 (0) ◽  
pp. A-36
Author(s):  
Tatsuro Ishizuka ◽  
Tokio Maeda ◽  
Sakura Yamaji ◽  
Yuji Ohgi ◽  
Humiaki Shibayama ◽  
...  

2020 ◽  
Author(s):  
Oliver A Silverson ◽  
Nicole G Cascia ◽  
Carolyn M Hettrich ◽  
Nicholas R Heebner ◽  
Tim L Uhl

Abstract Context: A single clinical assessment device that objectively measures scapular motion in each anatomical plane is not currently available. The development of a novel electric goniometer affords the ability to quantify scapular motion in all three anatomical planes. Objective: Investigate the reliability and validity of an electric goniometer to measure scapular motion in each anatomical plane during arm elevation. Design: Cross-sectional. Setting: Laboratory setting. Patients or Other Participants: Sixty participants (29 females, 31 males) were recruited from the general population. Intervention(s): An electric goniometer was used to record clinical measurements of scapular position at rest and total arc of motion (excursion) during active arm elevation in two testing sessions separated by several days. Measurements were recorded independently by two examiners. In one session, scapular motion was recorded simultaneously with a 14-camera three-dimensional optical motion capture system. Main Outcome Measures: Reliability analysis included examination of clinical measurements for scapular position at rest and excursion during each condition. Both the intra-rater reliability between testing sessions and the inter-rater reliability recorded within the same session were assessed using Intraclass Correlation Coefficients (ICC2,3). The criterion-validity was examined by comparing the mean excursion values of each condition recorded by the electric goniometer to the 3D optical motion capture system. Validity was assessed by evaluating the average difference and root mean square error (RMSE). Results: The between session intra-rater reliability was moderate to good (ICC2,3: 0.628–0.874). The within session inter-rater reliability was moderate to excellent (ICC2,3: 0.545–0.912). The average difference between the electric goniometer and 3D optical motion capture system ranged from −7° to 4° and the RMSE was between 7–10°. Conclusions: The reliability of scapular measurements is best when a standard operating procedure is used. The electric goniometer provides an accurate measurement of scapular excursions in all three anatomical planes during arm elevation.


Sign in / Sign up

Export Citation Format

Share Document